
Effectively Finding ICC-related Bugs in Android
Apps via Reinforcement Learning

Hui Guo
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University
Shanghai, China

guohui@mail.dhu.edu.cn

Ting Su∗
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University
Shanghai, China

tsu@sei.ecnu.edu.cn

Xiaoqiang Liu∗
School of Computer Science

and Technology, Donghua University
Shanghai, China

liuxq@dhu.edu.cn

Siyi Gu
School of Computer Science

and Technology, Donghua University
Shanghai, China

2222710@mail.dhu.edu.cn

Jingling Sun
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University
Shanghai, China

jingling.sun910@gmail.com

Abstract—Inter-component communication (ICC) is a key
mechanism in Android. It utilizes intents to achieve the commu-
nications between different components in the apps. Thus, the
successful execution of ICCs (named ICC calls) is fundamental
to the app operations. However, existing testing tools for Android
seldom explicitly consider these ICC calls, which may fail to find
those ICC-related bugs. To this end, we propose a novel ICC-
guided exploration strategy to effectively find the ICC-related
bugs. Our idea is that, we can (1) build an ICC call graph from
the app under test, and (2) use this graph to guide the exploration
toward exercising the ICC calls. To achieve this idea, we design
this ICC-guided exploration strategy based on Q-learning, a
classic reinforcement learning algorithm. Specifically, the reward
function explicitly considers the number of explored intents, the
number of promising-to-explore intents and the exploration order
of explored intents to improve testing effectiveness. Moreover,
to build a more complete ICC call graph, we design a graph
enhancement exploration strategy also based on Q-learning to
complement the call graph construction via static analysis.
We have implemented our idea as an automated testing tool
ICCDROID. The evaluation on 28 real-word Android apps shows
that ICCDROID can effectively find the most number of ICC-
related bugs within the same testing time, compared to existing
testing tools — the bugs found by ICCDROID are 1.7∼2.7 times
more than the others. So far, ICCDROID has found 13 previously
unknown ICC-related bugs, all of which have been confirmed by
the app developers and five have already been fixed.

I. INTRODUCTION

Android apps are composed of four major components:

Activity, Service, Broadcast Receiver and Content Provider.

These components communicate with each other through the

inter-component communication (ICC) mechanism. This ICC

mechanism is implemented via an intent object. Leveraging

the intent, the components can collaborate to achieve the app

functionalities. Thus, the successful execution of ICC serves

*Ting Su and Xiaoqiang Liu are the corresponding authors.

as the foundation for app operations. A failed ICC may result

in the apps crash, leading to poor user experience [1], [2].
An illustrative example. Fig. 1 shows a real bug in AARD2.

AARD2 is an app for managing one’s dictionary, which is

released on Google Play. However, viewing word Read by

history record has a serious error (shown in function 3 in

Fig. 1). Specifically, a user first clicks a word Read to view

the details of this word (see function 1 in Fig. 1). Then the

user performs some UI events (including navigation events) to

make app jump from DetailActivity to MainActivity (see �2∼�3
in Fig. 1). Subsequently, the user deletes the visited word Read
in MainActivity (see function 2 in Fig. 1). As we expected,

this word Read is successfully deleted in MainActivity (see �5
in Fig. 1). However, in this case, if the user views this word

again through the history record, a NullPointerException is

thrown when the app attempts to launch the DetailActivity of

word Read (see function 3 in Fig. 1).
In this example, the event sequence of this bug consists of

three sequentially executed functions (1 → 2 → 3). For each

function, there exists an activity switching. Taking function 1

as an example, after clicking word Read, the corresponding

event handler (onClick) in Fig. 1.(b) creates an intent object

and puts necessary messages (including target component and

detailed word information) in this object (lines 3-7). With the

help of startActivity method provided by Android system,

the intent object implements the communication from Main-
Activity to DetailActivity (line 8). Therefore, the DetailActivity
will be launched after the app executes onClick method. The

process from intent creation to target component launching is

called an ICC call. Unfortunately, the ICC call in function
3 fails as the deletion of word Read removes some crucial

information (e.g., word pronunciation), which is necessary for

the intent creation in function 3 . In this paper, we name such

403

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00032

���

���

����

���������	
��
�
�
��	��
�����

�
��	��
�����

�
��	��
�����	���

���������
�
���������
������

���������
�������

���������
��������

	
���
���

��� ��� �
�����

�������

�����
��

������
��

����
��
���

����

�����
� ��
�	

���� ��
��

�!"	�����
�#���
��

!	����
�

	
���
���

��� ��� �
�����

�������

�����
��

���

�������������������������

������
��

��������
�����

�
� ��!������
����"� ����#����$ ������� ����#����$ �
� � ����#����$�%��!
������������
�

&�'�()��*�����"�

��

��

��

��

��

��

�	

�

+�
,���
-
�� ����
����
-
�� +�
,���
-
�� ���������
-
��

���������	
��
�� ���� ���
�������� �����	�	
������	
������ ������	�	��� ��������������������� �!"

#����
����������
�!!�$
�������
��%&����'������'"(�$
�������
��%&����'�����������'")��� �$
�������
��%&����'
������������'"'*�� �*'�$
� �!�!��������������������$	
������	

+	

�����������������	
��
�
��� ������ ���
�
�
������������������ ��������� ���
������
������ ������	�	��� ��������������������� �!"

#����
����������
�!!�$
�������
��%&����'������'"(�$
�������
��%&����'�����������'")��� �$
�������
��%&����'
������������'"'*�� �*'�$
� �!�!��������������������$	
������

+

��
��
��
��
��
��
	�

�
�
��

&%'��,��./�
�
��
,��,����/��
,������"�"0,��
�,�

���������	
��
�� ���� ���
�������� �����	�	
������	
������ ������	�	��� ��������$
�������!���������,����� �����-�������.#�
���/�$
��������������0����/�������������������0����#%1�234/�$
�������!��#������4�
��2���
�� �,5�
�6****!�����*#���
���*������&�/�"/��&�*

���/�$
�������
��%&����'������'"(�$
� �!�!��������������������$	
������	

+	

�������� �����������������
�
��
�
�
�
������ ������������ �����
�
�
�
�������������������������� ������������ ����
������	
������ ������	�	��� ��������$
�������!���������,����� �����-�������.#�
���/�$
��������������0����/�������������������0����#%1�234/�$
�������!��#������4�
��2���
�� �,5�
�6****!�����*#���
���*������&�/�"/��&�*

���/�$
�������
��%&����'������'"(�$
� �!�!��������������������$
������

+

��
��
��
��
��
��
	�

�
��
��

&�'��,�
1/�
�
��
,��,����/��
,������"�"0,��
�,�

�

�������
���

����
���

����
�

	
���
���

��� ��� �
�����

�����
��

�����

������
��

+�
,���
-
��

���

����

�
������
���

��� ��� �
�����

�
��������
-
��

���� �������	�
��

�//�����!����,���!�� ���,�
�0��
�
,����2.��/�
�,�3�

����
��
���

����

�����
� ��
�	

���� ��
��

�!"	�����
�#���
��

!	����
�

����
����
-
��

����
��
���

����

�����
� ��
�	

���� ��
��

�!"	�����
�#���
��
!	����
�

4�
���

��� ����

Fig. 1: A real ICC-related bug in AARD2 app

errors that occur during the ICC call as ICC-related bugs,

which are induced by improper implementation of ICC calls.

However, detecting such ICC-related bugs is non-trivial due

to two major reasons. First, the combination of different ICC

calls could be complex and diverse. For example, triggering

the bug in Fig. 1 requires a specific execution order of three

ICC calls. The order 1 → 2 → 3 can crash the app, but if the

user views a word record (function 3) before deleting this

word (function 2), the app will perform successfully. Second,

the ICC calls as well as the connections between different

ICC calls need to be triggered by UI events. For example,

in function 1 , the ICC call is triggered by clicking the word

Read and the connection between 1 and 2 (the transition from

DetailActivity to MainActivity) is triggered by some other UI

events (e.g., navigation).

Limitations of existing techniques. Many automated GUI

testing techniques have been proposed to detect bugs in

Android apps. However, existing techniques have two major

limitations in the detecting ICC-related bugs. First, most

existing testing techniques [3]–[7] are generic and they are

not specifically designed to find ICC-related bugs. Moreover,

these techniques do not explicitly consider the execution orders

of different ICC calls. Therefore, it is difficult for them to find

such ICC-related bugs like in Fig. 1. Second, some techniques

[8]–[15] design different intent fuzzers to mutate intents and

then these intents are directly sent to apps to trigger ICC-

related bugs. However, they are difficult in finding realistic

ICC-related bugs because simply mutating intents may not

make sense in real-world scenarios. Take the intent in Fig.

1.(b) as example, intent fuzzers can generate an intent whose

extras field value is null or random key-value pairs (e.g.,

the key pair (“wordId”, -100)). It is impossible for users to

generate such intent through UI events.

Our approach. To this end, we propose a novel ICC-guided

exploration strategy to effectively find the ICC-related bugs.

Our idea is that, we can (1) build an ICC call graph from

the app under test, and (2) use this graph to guide the explo-

ration toward exercising ICC calls. Inspired by reinforcement

learning-based testing techniques [16]–[20], we introduce Q-

learning and design an ICC-related reward function to effec-

tively guide the exploration to test these ICC calls in the

apps. This reward function considers the number of explored

intents, the number of promising-to-explore intents and the

exploration order of explored intents during the exploration. It

can encourage the Q-learning agent to generate meaningful test

cases that contain complex and diverse ICC calls. Additionally,

the introduction of Q-learning enables this approach to test

apps like a normal user, ensuring that the exploration can

intelligently connect different ICC calls. As a result, it is more

promising to effectively reveal realistic ICC-related bugs.
Specifically, the ICC-guided exploration strategy depends

on an ICC call graph of the app under test. We can use static

analysis to generate the ICC call graph [21]–[25]. However,

the generated graph may be incomplete due to the common

weaknesses of static analysis [26], [27]. For example, some

communication information (e.g., the values of intent fields)

of target components are determined at app runtime, but the

static analysis is difficult to capture such dynamic information.

To this end, we propose a hybrid analysis technique combining

static and dynamic analysis to build a more complete ICC call

graph. First, according to the ICC mapping rules provided by

Android development documentation [28], we conduct a static

analysis on the app code to identify the target component of

each intent object. In this way, a static ICC call graph can be

built. Next, we design a graph enhancement exploration strat-

egy also based on Q-learning to complement static analysis. It

explores the UI events in the app to find additional ICC calls,

which have not been included in the static ICC call graph.
Evaluation and results. We implemented our approach as

an automated testing tool ICCDROID. The evaluation on 28

real-world Android apps shows that ICCDROID can find the

most number of ICC-related bugs compared to existing tools

within the same testing time. Specifically, the bugs found

by ICCDROID are 1.7∼2.7 times more than the others. We

have reported these ICC-related bugs revealed by ICCDROID

to the app developers. To date, 13 reported bugs have been

confirmed, and five of which have already been fixed.
Contributions. In this paper, we have made the following

contributions:

404

78���5�!�	
����0��'����� �����-'9
�������
7�������� �������6��8��/�#�
�����������/9
7������:5�
���9

7������	�������6��8��/����� �����-�������.#�
���/*9
7����0���	�������6��8��/�������������������0����#%1�234/*9
7����	�������68�8�4�
��,��&�*

���,

�������6!� �8��,5�
�,9
7*����9

7*������:5�
���9
7*��������9
�������

7*8���5�!�9	

78���5�!�	
����0��'����� �����-'9
�������
7�������� �������6��8��/�#�
�����������/9
7������:5�
���9

7������	�������6��8��/����� �����-�������.#�
���/*9
7����0���	�������6��8��/�������������������0����#%1�234/*9
7����	�������68�8�4�
��,��&�*

���,

�������6!� �8��,5�
�,9
7*����9

7*������:5�
���9
7*��������9
�������

7*8���5�!�9	

Fig. 2: A simplified Manifest.xml in AARD2 app

• We propose an ICC-guided exploration strategy based on

reinforcement learning to effectively find the ICC-related

bugs in Android apps.

• We combine static and dynamic analysis to generate

a more complete ICC call graph, which improves the

effectiveness of the ICC-guided exploration.

• We have implemented our approach as an automated

testing tool ICCDROID1. The evaluation on 28 real-world

apps shows that ICCDROID is much more effective and

efficient than existing tools in finding ICC-related bugs.

II. BACKGROUND

A. Inter-component communication (ICC) mechanism

An Android app is composed of multiple components

declared in Manifest.xml, these components are divided into

four types: Activity, Service, Content Provider and Broadcast
Receiver. The List Page (see �1 in Fig. 1) is an activity

called MainActivity. The users can interact with the widgets on

MainActivity (e.g., Button and TextView) to finish user-specific

functions. For example, clicking word Read can trigger the UI

event handler (see Fig 1.(b)) to achieve function 1 (view the

detail of word Read).

The communication mechanism between components can

be implemented by intent. For example, The activity switching

from MainActivity to DetailActivity (see function 1 in Fig. 1)

is implemented by the intent object in Fig. 1.(b). According

to the ICC mapping rules provided by Android development

documentation [28], [29], the target component in ICC is

determined by two forms of intent: explicit intent and implicit

intent. Explicit intent explicitly specifies the class of target

component by setting the value of component field. The intent

in Fig. 1.(b) is an explicit intent as it specifies the exact target

component DetailActivity (line 3). Implicit intent does not

specify the component class and the determination of target

component depends on five intent fields (action, category,

data, type and extras). Thus, the system needs to match

the value of these fields with the intent-filter tag of each

component declared in Manifest.xml.
For example, the intent in Fig. 1.(c) is an implicit

intent and declares three conditions (the action name

is itkach.aard2.Action_Delete, the category name is

android.intent.category.DEFAULT and the data type
that can be handled) for the target component (lines 4-6).

1https://github.com/androidAppGuard/IccDroid

���,�

�	
���	
�	�

���,�
����	�

�����

������

Fig. 3: Each agent-environment interaction in MDP

Then the system uses these values match each declared intent-

filter (shown as Fig. 2). Finally, the DeleteActivity component

matches successfully and is identified as the target component.

B. Q-learning

Q-learning is a well-known reinforcement learning algo-

rithm. The reinforcement learning problem can be repre-

sented as a standard mathematical framework MDP (Markov

Decision Process). This MDP can be defined as 4-tuple

〈S,A, P,R〉, where S is a set of all possible states, A is a

set of all possible actions, P is the set of state transition

probability and R represents the reward function. Fig. 3 shows

the agent-environment interaction at each of the discrete time

steps of a sequence. For each interaction t, the agent first

observes the environment to obtain a state st ∈ S and an

immediate reward rt ∈ R. The st and rt have well-defined

probability distributions dependent only on preceding state and

action (st+1 ∼ P (st, at) and rt+1 ∼ R(st, at)). Then the

agent selects an action at ∈ A base on st and rt to execute.

This action can cause an environment transition from state st
to state st+1 ∈ S and yield the next reward rt+1 ∈ R. After

that, the next interaction starts and the process will continue

until limit time runs out.

In Q-learning, the Q-table saves the value of each state-

action pair (e.g., the Q-value Q(s, a) represents the value

of action a in state s) and is updated by equation (1). In

this equation, α is the learning rate (range from 0 to 1) and

max
a

Q(st+1, a) denotes the maximum future reward that can

be achieved in state st+1. γ is the discount factor for future

reward and usually between 0.8 and 0.99 in [17]–[19].
Q(st, at) = Q(st, at) + α(rt + γ max

a
Q(st+1, a)−Q(st, at)) (1)

In equation (1), the value of subsequent state-action pairs

Q(st+1, a) can be propagated to the value of previous key-

value pairs Q(st, a). If the agent sufficiently explores the

environment, the value of each state-action pair in Q-table

will converge to its true value, as proven rigorously by [16].

Therefore, the Q-table can be precise to reflect the true value

of each action in environment. In this case, if the agent chooses

the action with the highest value at each interaction, the goal

of maximizing cumulative reward can be achieved.

III. APPROACH

Fig. 4 describes the workflow of ICCDROID. ICCDROID

takes an apk as input and outputs meaningful test cases

that contain diverse intent combinations to reveal ICC-related

bugs. The workflow contains three stages: one static analysis

and two dynamic explorations based on Q-learning (graph

enhancement exploration and ICC-guided exploration).

405

�/5
6�

��������	������

&�'�7���
�����������(��/!

+�
,����
-
��

�
������	��	��

�	�
����������	

&%'�2,!�,�������������(��/!

+�
,����
-
��

��
�
��
�����

����������	

8�
,��,��&�,���������'

�	��	��
��
��	����	� ����������	 ������

� � ��� ��� ���

� � ��� ��� ��������������

� � ��������� ���

�
 �

 � �
�� ����������� ���

� � �

&�'�+��,
,�"0��*���������

Fig. 4: The workflow of ICCDROID

Algorithm 1: Static analysis process

1 Function GenerateIccCallGraph(apk)
2 G ← ∅ // Initialize an ICC call graph
3 components ← getAllComponents(apk.manifestXml)
4 foreach sendComponent ∈ components do
5 foreach method ∈ component.dalvikBytecode do
6 if containIntent(method.params) then
7 intent ← getIntent(method.params)
8 if intent.type = explicit then // explicit intent
9 targetComponent ← intent.component

10 G ← G ∪ {sendComponent, intent, targetComponent}
11 else // implicit intent
12 fieldV alues ← resolveIntentF ield(intent)
13 foreach component ∈ components do
14 if match(fieldV alues, component.intentFilter) then
15 targetComponent ← component
16 G ←

G ∪ {sendComponent, intent, targetComponent}

17 return G

A. Static Analysis

The event sequence of such ICC-related bugs in Fig. 1

usually contains multiple ICC calls. To obtain these ICC calls,

we conduct a static analysis on the Manifest.xml and DALVIK

bytecode of the app by the ICC mechanism in Section II-A.

Algorithm 1 shows the detailed analysis process.

Given an apk, we first extract all activity components

(including the content of all intent-filters) from apk’s Man-
ifest.xml (line 3). For each component, all the methods in

DALVIK bytecode are parsed to identify whether there is

an ICC call (lines 4-16). If the method contains an intent

parameter, we will further analyze the target component of

this intent (lines 6-7). If it is an explicit intent, the target

component class can be obtained from the component field

and the edge from sendComponent to targetComponent
will be added to the ICC call graph G (lines 8-10). Where each

node is a component and each edge is a unique intent (ICC

call). Otherwise it is an implicit intent, we refer to Android

API document [28] to resolve the value of five intent fields

that specify the target component (line 12). Then we will use

these value to match the intent-filter of each component. If

matching successfully, this component is the target component

and the edge will also be added to G (lines 13-16). The stage

continues until each method in each component is analyzed.

Example. The implicit intent in Fig. 1.(c) has set three

fields for the target component. These value of intent fields can

be resolved by the specified API methods (e.g., setAction,

addCategory and setDataAndType). We further match

these value with each intent-filter in Manifest.xml of Fig. 2

and identify the target component is DeleteActivity. Thus, the

ICC call from MainActivity to DeleteActivity in function 2 of

Fig. 1 is identified and is denoted as i2 (intent2) in Fig. 4.(a)

(the simplified static ICC call graph for AARD2).

B. Dynamic Exploration based on Q-learning

In the two dynamic explorations, the goal of graph en-

hancement exploration is to generate a more complete ICC

call graph and the goal of ICC-guided exploration is to

effectively detect ICC-related bugs. The goals of these two

explorations are clear and reinforcement learning is suitable

for goal-driven scenarios. Thus, we mathematically model

Android testing problem as an MDP and introduce Q-learning

algorithm to achieve these goals. The definition of MDP 4-

tuple <S,A, P,R> takes the following formulation.

S: States. The goal of defining state is to distinguish

different GUI pages where the layout of each GUI page is

composed of a series of widgets. We utilize a variant of C-

Lv4 GUI comparison criterion GUICC [30] to abstract one

layout � as the corresponding state s. Let � be represented as

a n-tuple (w1, w2, . . . , wn) and wi is the ith widget in �. We

define state as s=∪w∈�{w.t} where w.t is the type of widget

w, such as Button, TextView and TextEditor. This comparison

criterion abstracts the structure characteristics by aggregating

all the widget types in �, which can effectively differentiate

the overall layout of GUI pages.

For example, Fig. 1.(a) is the simplified GUI layout of �1.

Because w1, w2, w5 and w6 can denote the all widget types in

�1, the abstracted state is s={w1.t,w2.t,w5.t,w6.t}. The layout

�1 has one more TextView widget w6 than �5 but the type of

w6 is same as w7 and w8, therefore �1 and �5 are abstracted

as one state. The layout �1 and �2 are different states as the

pronunciation picture (horn) widget only exists in �2.

A: Actions. We define the executable events as actions in

MDP. In order to obtain these events, ICCDROID dumps the

layout hierarchy and analyzes the widget attributes (e.g., click-

able, scrollable) to obtain executable events. Each executable

event is saved as the corresponding state-action pair (s, a) in

Q-table where a is an executable action in state s.

selectAction(s) =

{
max

a
Q(s, a) 1− ε

random a action ε
(2)

We utilize the ε-greedy policy described in equation (2)

to select next action. Under the probability of 1-ε, the agent

406

selects an action with the highest value for exploiting previous

exploration experience. In the remaining ε probability, the

agent selects a random action (including system-level actions

such as screen rotation and phone call) to explore the app.

According to previous experiences [17]–[19], we set ε to 0.2

to balance exploration and exploitation.
R: Reward. The role of reward is to yield a numeric value

for guiding agent toward a valuable exploration, hence it is cru-

cial to design an effective reward function for triggering more

bugs. We design two reward functions against the different

exploration objectives during the two dynamic explorations.
P : Transition Probability Function. After performing

action at, the transition probability P (st+1|st, at) from state st
to state st+1 is decided by the app. Therefore, P is determined

after the app development finishes.
Based on this MDP definition, we design two reward

functions for the graph enhancement exploration and the ICC-

guided exploration.

(1) Graph Enhancement Exploration
The ICC call graph generated by static analysis may be

incomplete due to the imprecision of intent resolution. To

complement the graph, we design an UI reward, based on the

execution frequency of actions and the ICC calls at runtime,

as the reward function of graph enhancement exploration.
UI reward function. The UI reward rui as defined as

equation (3) consists of two parts: UI action reward and ICC

call reward. The UI action reward 1
|st,at| denotes the reciprocal

of execution frequency of action at in st. It signifies that the

actions performed less have higher value. The ICC call reward

is a sparse reward, which depends on whether the current UI

action does trigger a new intent. If it does, there is a new ICC

call and the reward value is 1; otherwise, it is 0.

rui =

{ 1
|st,at| + 1 if new ICC call occurs

1
|st,at| + 0 otherwise

(3)

Based on this UI reward function, we utilize Q-

learning algorithm to achieve a graph enhancement explo-

ration. The detailed process is described in the function

graphEnhancementExploration of Algorithm 2. For each

interaction, ICCDROID first abstracts structure characteristics

of GUI page as state st and finds out all the executable

actions actionst (line 5). The Q-table will record the value

of each action or assign an default initial value 500 if the

action executes for the first time (lines 6-8). Then ICCDROID

employs equation (2) to select an action and calculates the UI

reward by equation (3) after executing this action (lines 9-11).
It is worth emphasizing that the graph enhancement ex-

ploration benefits from the propagation of Q-value (line 12),

which enables agent to select actions with reward value

regardless of the current state. If an executed action gains

higher UI reward rui, its updated Q-value Q(st, at) will

increase and the action will be more possible to be executed

in next explorations. Otherwise, the agent will explore other

valuable actions. Since the UI reward function considers the

action execution frequency, the actions performed less have

higher reward and are prioritized. Thus, the agent sought to

Algorithm 2: Exploration Strategies

1 Function graphEnhancementExploration(G, app)
2 Q ← ∅ // initialize Q-table
3 M ← ∅ // save visited intent
4 while ¬isT imeOver() do
5 st, actionst ← abstractStructureInfo()
6 foreach actiont ∈ actionst do
7 if actiont /∈ Q then
8 setQvalue(Q, st, actiont, Qinit)

9 at ← selectAction(Q, st)
10 st+1 ← executeAction(app, at)
11 rui ← getUIReward(at, app)
12 Q(st, at) ← Q(st, at) + α(rui + γ max

a
Q(st+1, a) − Q(st, at))

13 intent ← getCurrentIntent(app) // use Java reflection
14 if intent �= null ∧ intent /∈ M then // new ICC behavior
15 M ← M ∪ intent
16 if intent /∈ G then // complement ICC call graph
17 G ← G ∪

{intent.sendComponent, intent, intent.targetComponent}

18 return G

19 Function IccGuidedExploration(G, app)
20 Q ← ∅ // initialize Q-table
21 seq ← List()
22 while ¬isT imeOver() do
23 st, actionst ← abstractStructureInfo()
24 foreach actiont ∈ actionst do
25 if actiont /∈ Q then
26 setQvalue(Q, st, actiont, Qinit)

27 at ← selectAction(Q, st)
28 st+1 ← executeAction(app, at)
29 rintent ← getIntentReward(seq,G)
30 Q(st, at)

← Q(st, at) + α(rintent + γ max
a

Q(st+1, a) − Q(st, at))

31 seq.append(st)
32 if seq.length ≥ c then
33 restart(app)
34 seq.removeAll()

systematically perform each UI action to find new dynamic

ICC calls at runtime.

The sparse ICC call reward can encourage agent to find

new ICC calls, which is used to complement the static ICC call

graph. We first get the current runtime intent object in app (line

13). If the intent visits for the first time, it represents that the

agent has explored a new ICC call (lines 14-15). Additionally,

if this ICC call is not in the static ICC call graph, the graph

will be updated (lines 16-17).

Overall, the graph enhancement exploration not only

achieves a systematic testing for each UI event, but also

generates a more complete ICC call graph that used for the

next ICC-guided exploration.

(2) ICC-guided exploration
In order to reveal the ICC-related bugs like in Fig. 1,

besides the single ICC calls, the combinations of different

ICC calls also need to be considered. To this end, we design

an intent reward for the ICC-guided exploration. This intent

reward function considers the number of explored intents,

the number of promising-to-explore intents (may be explored

in subsequent actions) and the exploration order of explored

intents to explore different intent combinations.

Intent reward function. We leverage the exploring state

sequence seq and the ICC call graph G from graph enhance-

ment exploration to calculate intent reward r. As shown in

407

equation (4), rintent consists of three parts: the number of

explored intents, the number of promising-to-explore intents

and the exploration order of explored intents. Where f(seq,G)
represents the number of intents currently explored by testing

tool in G. It can be calculated through calculating the number

of intents owned by both seq and the ICC call graph G.

g(seq,G) denotes how many intents that seq can continue

to explore in G. We view the g(seq,G) as the number of

promising-to-explore intents. Both of f(seq,G) and g(seq,G)
will be normalized by dividing by the maximum value (the

number of all intents in G |G|). The last function h(seq) is

to identify whether the exploration order of explored intents

in seq has been executed in prior episodes. If this exploration

order is executed for the first time, h(seq) is 1; otherwise 0.

rintent =
f(seq,G)

|G| +
g(seq,G)

|G| + h(seq) (4)

Example. Suppose G is the generated ICC call graph

in Fig. 4.(b) and the exploring state sequence seq is

[s1(Main),s2(Detail)]. Where s1 and s2 is abstracted from

MainActivity and DetailActivity, respectively. Because both

seq and G contains the intent i3 from Main to Detail, the

number of explored intents f(seq,G) is 1. The testing tool can

continue to explore Add and Edit from s2 through i4 and i5
of G, so the number of promising-to-explore intents g(seq,G)
is 2. Further, the number of all intents in G (|G|) is 9, then
f(seq,G)

|G| is 1/9 and
g(seq,G)

|G| is 2/9. Because this intent order

[i3] is the first executed, the h(seq) is 1. Thus, the total reward

rintent is 12/9.
In this exploration, we once again use Q-learning algorithm

but take intent reward as the reward function to focus the

execution of ICC calls, aiming to explore complex and diverse

ICC combinations. The function IccGuidedExploration in

Algorithm 2 shows the process of ICC-guided exploration. The

whole process is similar to graph enhancement exploration.

For each interaction, ICCDROID also first abstracts state (line

23), assigns initial value for each new action (lines 24-26),

selects one action to execute (lines 27-28), then calculates the

intent reward rintent and updates the Q-table (lines 30-31).

One difference is that ICCDROID needs to save the exploring

state sequence seq. If the length of seq exceeds the specified

test case length c (the default is 15), ICCDROID will restart

the app and remove all states in seq to calculate rintent for the

next test case (lines 32-34). Through the definition of rintent,
if one test case contains more explored intents, can explore

more promising-to-explore intents and this intent order has

never been explored, rintent will be higher, then these events in

this test case can have a higher value through the propagation

of Q-value, so they will be prioritized.
Thus, the intent reward can encourage the agent to generate

long test cases that contain multiple intents and various

execution order of intents. Then it is more promising to find

ICC-related bugs.

IV. EVALUATION

In our experimental evaluation, we aim to answer the

following three research questions:

• RQ1 How effective is ICCDROID in finding ICC-related

bugs, compared to existing testing tools?

• RQ2 How efficient is ICCDROID in finding ICC-related

bugs, compared to existing testing tools?

• RQ3 Can the graph enhancement exploration strategy obtain

a more complete ICC call graph? How effective is the ICC

call graph in improving the testing effectiveness of the ICC-

guided exploration strategy in bug finding?

A. Evaluation Setup

Tool Implementation. As a fully automated testing tool,

ICCDROID reuses and extends the following tools: SOOT

framework [31] for resolving static intents in Dalvik bytecode

(similar to ICCBOT [21]), UIAUTOMATOR2 [32] for dumping

GUI hierarchy files of GUI pages, Android Debug Bridge

(ADB) [33] for sending UI events and LOGCAT [34] for

recording ICC calls and monitoring runtime exceptions.

To identify the intents at runtime, ICCDROID first utilizes

Java reflection to load the single-instanced ActivityThread
class. Then the current activity object mActivities can be

obtained by assessing the member variable of ActivityThread.

Finally, the intent object and these intent fields can be directly

fetched from mActivities.

App Subjects In this evaluation, we aim to select rep-

resentative target apps by following the three steps. First,

ANDROTEST [35] and THEMIS [36] are the two standard

Android testing benchmarks used in several work [17], [37],

[38]. Thus, we collected all the 78 open-source apps in these

two benchmarks. Second, we excluded 21 apps that have not

been maintained within the recent two years to ensure timely

feedback from app developers. Third, to focus on real-world

and non-trivial apps, we excluded 19 apps with fewer than

1000+ installations on Google Play and fewer than 100 stars

on Github, and 10 apps which only have fewer than 2 activity

components. Finally, a total of 28 apps are used as the app

subjects in our evaluation. Table I shows these apps sorted

by executable lines of code (ELOC) where the column AC
denotes the total number of activity components in these apps.

Execution Environment. All the 28 open-source apps ran

on 2GB RAM Android emulators (Marshmallow version,

Android 7.0) deployed on a 64-bit Ubuntu physical machine

with Intel(R) Core(TM) i5-3470 CPU and 16GB RAM.

Bug and Coverage Metrics. According to Android

development documentation [28], the communication be-

tween components depends on the specified API methods

(e.g., startActivity(), startActivityForResult()

and startActivityIfNeeded()) to launch an ICC call. We

call these specified API methods as ICC methods in this paper.

Further, we follow the definition in STOAT [39], where an app

bug is identified if the exception lines in stack traces contain

the keyword of app’s package name. For an app bug, if the call

chain in the stack traces contains these ICC methods, it denotes

this bug occurs during an ICC call and we identify such

bugs as ICC-related bugs. Additionally, if one ICC-related bug

is identified, we will also record the bug-triggering time to

measure the efficiency of testing tools.

408

TABLE I: Testing results on the 28 open-source apps
Target App %ICC Method Coverage #ICC-related Bug #Nodes #Edges

App Name #Install #Star ELOC AC ME MO QT FA MA IC MO QT FA MA IC SA HA SA HA
PdfViewer 10K+ 341 1108 5 16 31.2 6.2 68.8 31.2 62.5 0 0 0 0 0 3 4 14 17

Privacyfriendlynotes 10K+ 76 3330 11 19 57.9 68.4 84.2 63.2 73.7 0 1 1 1 1 11 11 32 38

Swiftp 1K+ 678 5248 4 6 100 83.3 66.7 83.3 66.7 1 0 1 1 1 3 3 22 24

Dokuwiki 10K+ 51 5344 3 11 45.5 81.8 81.8 81.8 81.8 1 0 4 2 1 3 3 10 17

CatimaLoyalty 10K+ 469 6131 10 13 30.8 38.5 61.5 53.8 30.8 2 0 1 1 2 9 10 22 28

Aard2 10K+ 349 6619 12 10 30.0 30.0 20.0 20.0 70.0 0 0 1 2 1 2 4 7 14

BudgetWatch 5K+ 79 7430 10 16 43.8 43.8 81.2 25.0 25.0 0 0 2 1 0 8 9 28 36

Tomdroid 50K+ 16 8076 8 26 46.2 27.0 30.8 53.8 61.5 1 0 0 1 1 2 7 11 13

AlarmClock 10M+ 385 9092 5 10 50.0 60.0 50.0 60.0 60.0 0 1 0 1 1 2 4 9 13

Trackworktime 5K+ 100 10689 13 24 33.3 50.0 37.5 4.2 62.5 0 1 0 1 2 13 13 43 46

FairEmail 500K+ 1.8K 18073 4 38 18.4 2.6 13.2 18.4 13.2 1 0 0 1 1 4 4 17 21

Vanilla 500K+ 1K 18604 13 21 19.1 28.6 33.3 38.1 47.6 0 0 1 1 2 9 9 35 42

Timber 100K+ 17 20238 6 20 0.0 0.0 30.0 5 5 0 0 0 0 0 4 6 25 26

Material0istic 10K+ 20K 21919 23 35 42.9 60.0 42.9 20.0 37.1 1 2 1 0 0 22 22 115 131

BetterBatteryStats − 565 22680 12 17 52.9 76.5 17.6 64.7 47.1 2 3 2 2 3 9 9 14 21

AnyMemo 100K+ 144 23486 28 67 13.4 7.5 16.4 43.3 50.7 0 0 0 3 4 16 20 28 37

Wikipedia 50M+ 1.9K 29557 40 122 3.3 0.0 5.7 6.6 10.7 0 0 0 0 4 40 40 121 151

Feeder 10K+ 374 31358 4 13 38.5 38.5 38.5 53.8 38.5 0 0 0 0 0 0 2 0 4

Runnerup 50K+ 655 34714 17 28 0.0 3.6 0.0 21.4 7.1 0 0 0 1 0 13 13 19 26

AmazeFileManager 1M+ 4.5K 34790 5 32 3.1 3.1 6.2 3.1 9.4 0 0 0 0 3 4 5 15 25

APhotoManager − 214 36606 11 16 37.5 12.5 12.5 25.0 37.5 3 0 1 0 3 10 10 62 82

BookCatalogue 100K+ 369 41638 35 78 51.3 65.4 51.3 39.7 65.4 2 3 2 0 2 17 22 60 123

AntennaPod 500K+ 4.9K 47555 10 66 7.6 1.5 22.7 13.6 13.6 2 2 3 3 1 7 7 59 69

SuntimesWidget − 264 47947 25 67 19.4 14.9 0 4.5 26.9 0 0 0 1 1 24 24 142 157

AnkiAndroid 5M+ 6.4K 50707 21 37 18.9 2.7 18.9 56.8 48.6 1 1 4 1 3 17 17 32 45

MyExpenses 1M+ 551 63276 32 79 3.8 6.3 2.5 8.9 29.1 0 0 0 0 2 30 30 194 221

Gadgetbridge − 596 79798 36 58 0.0 3.5 0.0 3.5 3.5 0 1 1 0 1 28 28 46 63

K9Mail 5M+ 2.3K 93455 30 54 0.0 3.7 0.0 3.7 16.7 0 1 0 0 3 23 24 53 72

Average/Sum - - - 15 36 28.5 29.7 31.9 32.4 39.0 17 16 25 24 43 330 360 1239 1545

1 Column AC, ME, #Install and #Star denote the number of activity components, the number of ICC methods, the number of installations on Google
Play and the number of stars on Github, respectively.

2 Column MO, QT, FA, MA and IC denote MONKEY, Q-TESTING, FAX, MATE and ICCDROID, respectively. Column SA and HA represent static
analysis and hybrid analysis, respectively.

Code coverage is one mainstream way to represent the

test adequacy of app source code during testing. However,

traditional code coverage (e.g., line code coverage) may not

be able to intuitively reflect the test adequacy of ICC calls in

the app under test. Therefore, we define ICC method coverage
to measure how many ICC methods are covered during testing.

Because this metric can intuitively reflect the coverage of ICC

calls in apps. To calculate the achieved ICC method coverage

during testing, we instrumented each ICC method in each

target app. The column ME in Table I shows the total number

of ICC methods in each app.

Evaluation Setup of RQ1 and RQ2. Most existing au-

tomated testing tools [17], [39]–[43] for Android apps are

generic. Although these testing tools mainly focus on UI

events and do not explicitly consider the intents during testing,

they also may find ICC-related bugs. Thus, we chose two rep-

resentative tools (MONKEY and Q-TESTING) for comparison.

Additionally, some other testing tools [10], [11], [14], [15],

[23], [24], [44], [45] leverage intents to test the ICC calls in

the apps for finding ICC-related bugs. These testing tools are

relevant to ICCDROID. Thus, we also chose two representative

tools (FAX and MATE) for comparison.

• MONKEY and Q-TESTING: These two tools represent those

typical generic testing tools. MONKEY [40] is the state-of-

practice testing tool, which sends pseudo-random events to

the app under test. Q-TESTING [17], like ICCDROID, is a

testing tool based on reinforcement learning. It designs a

curiosity-driven exploration strategy to select the event that

is most likely to jump to a new page. These two testing

tools are widely used as baselines for comparison in many

work [20], [37], [39], [42], [46].

• FAX and MATE: These two tools represent those testing

tools that explicitly consider the ICC calls during testing.

FAX [14] first sends an intent to launch a specified activity

and then injects random UI events (e.g., monkey events)

to explore this activity. MATE [15] generates random tests

with the combination of 90% UI events and 10% intents to

discover more bugs. FAX and MATE consider the combina-

tion of UI events and intents and thus these two testing tools

could detect ICC-related bugs. Other testing tools [10], [11],

[23], [24], [44], [45] design different intent fuzzers to mutate

intents. Then these intents are directly sent to the apps to

detect failed ICC calls. However, these intents generated

by intent fuzzers are unrealistic as the users are difficult to

reach these scenarios through normal UI interactions. As a

result, most bugs revealed by these testing tools cannot be

reproduced [47], so we did not compare with them.

We allocated 2 hours for each evaluated tool in one run, and

repeated 5 independent runs for each tool. Thus, the evaluation

for 28 apps takes 5×2×5×28=1400 machine hours. According

to the previous work [42], [43], we set 200 milliseconds event

interval for MONKEY. Q-TESTING is a closed-source testing

tool, so we adopted the default configuration. For FAX and

MATE, the 2-hour testing time includes the time required by

their static analysis and dynamic exploration. Note that these

two tools were setup with the assistance from the correspond-

409

ing tool authors to ensure fair comparison. We allocated 1 hour

for ICCDROID to construct the ICC call graph (including the

static analysis and graph enhancement exploration) and the

remaining 1 hour for ICC-guided exploration.

Evaluation Setup of RQ3. ICCDROID leverages the graph

enhancement exploration to complement the static ICC call

graph and uses the ICC-guided exploration to effectively find

ICC-related bugs. Thus, we implemented two versions of

ICCDROID (ICCDROIDα and ICCDROIDβ) as the baselines

to evaluate the effectiveness of these strategies.

• ICCDROIDα: This baseline comparison aims to evaluate the

effectiveness of the ICC-guided exploration in bug finding.

Specifically, for the workflow in Fig. 4, ICCDROIDα only

runs Stage1 (static analysis) and Stage2 (graph enhance-

ment exploration) but without Stage3 (ICC-guided explo-

ration). Within the 2-hour testing time, ICCDROIDα runs

Stage2 until timeout after Stage1 finishes. If ICCDROID

can find more ICC-related bugs than ICCDROIDα, we can

conclude that the ICC-guided exploration is indeed useful.

• ICCDROIDβ : This baseline comparison aims to evaluate

whether a more complete ICC call graph can improve

the effectiveness of ICC-guided exploration in bug finding.

Specifically, for the workflow in Fig. 4, ICCDROIDβ runs

runs Stage1 (static analysis), Stage2 (graph enhancement

exploration without updating the ICC call graph like Fig.

4.(a)) and Stage3 (ICC-guided exploration). Within the 2-

hour testing time, ICCDROIDβ runs Stage1 and Stage2
within the first one hour, and runs Stage3 in the remaining

one hour. If ICCDROID can find more ICC-related bugs than

ICCDROIDβ , we can conclude that a more complete call

graph (with the help of graph enhancement exploration) is

indeed useful.

We allocated the same 2-hour time for ICCDROID, i.e., one

hour for static analysis and the graph enhancement exploration

and the remaining one hour for the ICC-guided exploration.

B. Experimental Results

Answer to RQ1. Table I shows the achieved ICC method

coverage of five testing tools (MONKEY, Q-TESTING, FAX,

MATE and ICCDROID) on the 28 apps. The gray cell high-

lights which tool achieves the highest coverage. The last row

gives the overall average result. ICCDROID achieved 39.0%

ICC method coverage on average and exceeded MONKEY

by 10.5%, Q-TESTING by 9.3%, FAX by 7.1% and MATE

by 6.6%. Additionally, ICCDROID achieved the highest ICC

method coverage on 15 apps, while MONKEY, Q-TESTING,

FAX and MATE win on 3, 6, 7 and 8 apps, respectively.

Performing an ICC method can launch an ICC call, so

the number of the execution of ICC calls during testing is

also important to achieve high ICC method coverage. During

the 2-hour testing, MONKEY, Q-TESTING, FAX, MATE and

ICCDROID averagely executed 9132, 9053, 9722, 9977 and

15337 ICC calls on 28 apps. For MONKEY and Q-TESTING,

they only focus on generating UI events but do not explicitly

consider the ICC calls during testing. As a result, lots of UI

events that can trigger ICC calls are missed and the number

of executed ICC calls is only about 60% of ICCDROID.

FAX first sends an intent to launch a specified activity, and

this process triggers one execution of ICC call. However,

FAX only generates random monkey events to test the app

after launching the activity. Thus, most of the testing time

is also spent on UI events instead of intents. MATE ranks

second in the number of the execution of ICC calls as its

test cases are composed of 90% UI events and 10% intents.

ICCDROID designs an ICC call reward in graph enhancement

exploration to encourage agent to explore unexecuted ICC

calls. Additionally, the intent reward in the next ICC-guided

exploration also drives ICCDROID to explore the combinations

of different ICC calls. Thus, ICCDROID performed more ICC

calls than other tools during testing.

Table I also shows the ICC-related bugs found by each tool.

ICCDROID discovered the most ICC-related bugs (43), which

is 2.5 times more than MONKEY (17), 2.7 times more than

Q-TESTING (16), 1.7 times more than FAX (25) and 1.8 times

more than MATE (24). Additionally, ICCDROID detected the

most number of ICC-related bugs in 17 apps, followed by

MATE (9), FAX (7), Q-TESTING (6) and MONKEY(5).

We also compared the ICC-related bugs revealed by the

five testing tools. These tools found a total of 61 unique

ICC-related bugs on 28 apps. Among these bugs, ICCDROID

achieved 70.4% detection rate of ICC-related bug, followed

by FAX (40.9%), MATE (39.3%), MONKEY (27.9%), and Q-

TESTING (26.2%). For the number of unique ICC-related bugs,

ICCDROID detected the most unique ICC-related bugs (13)

while MONKEY, Q-TESTING, FAX and MATE only found 2,

2, 7 and 2. FAX found 7 unique ICC-related bugs as it sends

intents to both internal activities and exposed intents while

MATE only generates intents for exposed intents. As a result,

FAX found many unique bugs in internal activities. However,

in principle, Android system does not allow internal activities

to be started by external apps. We have included these bugs

even if they are difficult to trigger in real-world scenarios.

ICCDROID is the only tool that considers the execution order

of ICC calls, so it can generate many long test cases that

contain different ICC calls to discover deep ICC-related bugs

and effectively find the most unique ICC-related bugs.

Most ICC-related bugs revealed by ICCDROID have been

reproduced and reported to developers. So far, 13 reported

bugs have been confirmed. Among them, 5 have already been

fixed. Table II lists the detailed information for each confirmed

bug. Take a bug confirmed by developers in AmazeFileM-
anager as example. This app throws a NullPointerException
when pasting a deleted file. The shortest event sequence for

triggering this bug requires 7 consecutive events. There are

three different ICC calls (“copy a file”, “delete a file” and

“paste a file”) in this buggy event sequence. The random

exploration strategy of MONKEY is hard to generate such

long meaningful event sequence. Q-TESTING pays attention

to the events that can discover new pages, but most events

in this buggy event sequence do not change the page. As a

result, Q-TESTING missed the bug. Even if FAX and MATE

generated the intents to trigger these ICC calls during testing.

410

TABLE II: Confirmed bugs by testing tools
App Name App Category Issue ID Bug State Cause

AmazeFileManager Tool 1 Confirmed NullPointerException

AntennaPod Player 2 Confirmed XmlPullParserException

AlarmClock Tool 3 Fixed ActivityNotFoundException

Aadr2 Education 4 Fixed NullPointerException

AnyMemo Education 5 Confirmed ExpatParserException

BookCatalogue Education 6 Confirmed DeadObjectException

BookCatalogue Education 7 Confirmed NullPointerException

APhotoManager Life 8 Confirmed RuntimeException

Betterbatterystats Tool 9 Confirmed UnavailableException

CatimaLoyalty Finance 10 Fixed IllegalArgumentException

CatimaLoyalty Finance 11 Fixed ActivityNotFoundException

Swiftp Tool 12 Fixed ActivityNotFoundException

Simpletask Tool 13 Confirmed IllegalArgumentException

However, neither of them considers the execution order of

intents, so the two tools both missed this bug. Fortunately, the

enhanced ICC call graph generated by hybrid analysis contains

these three ICC calls, and the intent reward designed for ICC-

guided exploration considered the execution order of different

intents. This bug was found by ICCDROID when the ICC-

guided exploration ran for only 15 minutes, which shows the

effectiveness of our approach.

In summary, ICCDROID found the most number of ICC-
related bugs compared to existing tools. Specifically, the bugs
found by ICCDROID are 1.7∼2.7 times more than the others.

Answer to RQ2. Fig. 5 shows the number of revealed

ICC-related bugs over the testing time. At the first 5 minutes,

ICCDROID, FAX and MATE conducted static analysis on the

target apps, so the number of detected ICC-related bugs is

0. After generating the ICC call graph, ICCDROID entered the

graph enhancement exploration. The ICC call reward designed

for this stage encourages the agent to explore new ICC calls

to complement the static ICC call graph, so some ICC-related

bugs were found. As a result, ICCDROID took the first place at

about 13 minutes. It indicates that ICCDROID can find several

ICC-related bugs within a short time. As the progress of testing

continues, these testing tools are difficult to find new ICC-

related bugs. Therefore, after about 37 minutes, the curves of

these tools saturate.

After 1 hour, ICCDROID entered the ICC-guided explo-

ration. During this stage, the intent reward considers the

number of explored intents, the order of explored intents and

the number of promising-to-explore intents, which enables the

agent to explore complex and diverse combinations of ICC

calls. Thus, ICCDROID can continuously discover new deep

ICC-related bugs and keep top one during the subsequent test-

ing. Overall, in term of detecting ICC-related bugs, ICCDROID

has exhibited high testing efficiency.

In summary, ICCDROID is more efficient than existing tools
in finding ICC-related bugs within the same testing time.

Answer to RQ3. The last four columns in Table I shows the

number of nodes and edges in the ICC call graph generated by

static analysis (ICCDROIDα) and hybrid analysis (ICCDROID).

We can see that the graphs generated by ICCDROID has 30

more nodes and 306 more edges than the graphs generated by

ICCDROIDα. This shows the graph enhancement exploration

enhanced the static ICC call graph and the hybrid analysis

approach generated a more complete ICC call graph. This

phenomenon benefits from the ICC call reward in the graph

!
"
#$
#%
$&
'!
'"
&$
&%

! #! $! '! &! (! "!)! %! *! #!! ##! #$!

�����+�����
,��
-�.�
-�	/��
+0�����	1�

.�
���	�
�	����

��
�
0�
��
��
��
��
�1
�

Fig. 5: Progressive ICC-related bugs revealed by testing tools

enhancement exploration, which enables agent to dynamically

explore new ICC calls to complement the static ICC call graph.

Fig. 6 shows the achieved ICC method coverage and the

number of revealed ICC-related bugs over execution time for

ICCDROID, ICCDROIDα and ICCDROIDβ . For the achieved

ICC method coverage, ICCDROIDα achieved 40.7% ICC

method coverage and higher than ICCDROID (39.0%) and IC-

CDROIDβ (37.8%). We can see that ICCDROID, ICCDROIDα

and ICCDROIDβ achieved close code coverage in the previ-

ous 1 hour. After 1 hour, ICCDROIDα continued the graph

enhancement exploration while ICCDROID and ICCDROIDβ

entered the ICC-guided exploration. After about 76 minutes,

ICCDROIDα exceeded the other two tools and kept top one

during the subsequent testing. This phenomenon shows the

graph enhancement exploration can indeed guide the tool to

explore new ICC calls. Thus, the dynamic graph enhancement

exploration can generate a more complete ICC call graph.

For the revealed ICC-related bugs, ICCDROID found the

most number of ICC-related bugs (43) while ICCDROIDα and

ICCDROIDβ are 32 and 36. In the previous 1 hour, all the three

tools entered the static analysis and the graph enhancement

exploration, so the number of revealed ICC-related bugs were

close. After 1 hour, ICCDROID and ICCDROIDβ entered

the ICC-guided exploration while ICCDROIDα continued the

graph enhancement exploration. As a result, ICCDROID and

ICCDROIDβ exceeded ICCDROIDα after about 69 minutes.

This phenomenon shows that the ICC-guided exploration can

improve the ability of discovering ICC-related bugs. Addi-

tionally, the ICC-guided exploration of ICCDROID used the

enhanced ICC call graph while the ICC-guided exploration

of ICCDROIDβ continued to use the static ICC call graph.

As a result, ICCDROID found more 7 ICC-related bugs than

ICCDROIDβ in the ICC-guided exploration. It means the more

complete ICC call graph can improve the ability of tools to

found ICC-related bugs.

In summary, the ICC call graphs built by the hybrid analysis
are more complete than those built by the static analysis.
These more complete ICC call graphs help the ICC-guided
exploration find more unique ICC-related bugs.

V. DISCUSSION

Enumeration of ICC call combinations. Enumerating all

the possible combinations of ICC calls via full permutation

might be plausible to find more ICC-related bugs. However,

we may face two challenges. First, the enumeration could be

411

!
!2!(
!2#
!2#(
!2$
!2$(
!2'
!2'(
!2&
!2&(

! $! &! "! %! #!! #$!

�����+����
�
,��

-�.�
!
"
#$
#%
$&
'!
'"
&$
&%

! $! &! "! %! #!! #$!

�����+�����

,��

-�.�

.�
���	�
�	����

��
�
�

��
��
��
��

�
��
1�

.�
���	�
�	����

��
�
0�
��
��
��
��
�1
�

Fig. 6: The achieved ICC method coverage and the number of

revealed ICC-related bugs over execution time

impractical as the number of combinations increase exponen-

tially when the number of ICC calls is large. Second, simply

enumerating the combinations of ICC calls may not be able

to ensure the connections between different ICC calls. These

connections usually require the execution of some additional

UI events. As a result, most of the combined ICC calls could

be invalid. Thus, we propose a ICC-guided exploration strategy

to explore diverse combinations of ICC calls and introduce Q-

learning to test the app by connecting different ICC calls.

Threats to validity. The main threat is the identification

of ICC-related bugs. We identify an ICC-related bug by

analyzing its call chain in stack traces. However, some other

exceptions (e.g., SecurityException) may lead to similar call

chains, thus incurring false positives. To reduce this threat,

we reproduced all the found bugs with such exceptions, and

manually analyzed the root causes to confirm whether they

were true ICC-related bugs.

VI. RELATED WORK

Automated testing tools for Android apps. Most auto-

mated GUI testing tools [48]–[50] have been proposed to

ensure the reliability and quality of Android apps, including

random testing tools [40], [51], [52], model-based testing tools

[30], [39], [42], [47], [53]–[55], search-based testing tools

[41], [43], [56]–[58] and reinforcement learning-based testing

tools [17]–[20], [59]. However, these testing tools focus on

generating UI events to test apps but do not explicitly consider

the ICC calls during testing. Therefore, it could be difficult for

these tools to effectively find ICC-related bugs. In contrast,

our tool ICCDROID utilizes the hybrid analysis to generate an

ICC call graph for the app under test and uses an ICC-guided

exploration strategy to effectively find ICC-related bugs.

Recently, some GUI testing tools [17]–[20], [59]–[62] adopt

reinforcement learning to do testing. Q-TESTING [17] designs

a curiosity-driven exploration strategy to explore previously

unvisited GUI pages. Vuong [19] utilizes the execution fre-

quency of events as the reward function to systematically test

each event in the app. However, these testing tools do not

specifically design an ICC-related reward function to explore

ICC-related bugs. Thus, they are limited in effectively finding

ICC-related bugs. ICCDROID designs a ICC-guided explo-

ration based on an ICC call graph, aiming to comprehensively

test these ICC calls in the apps.

Finding ICC-related bugs in Android apps. Some testing

tools [2], [9]–[13], [45], [63] design different intent fuzzers to

mutate intents. These intents are then directly sent to apps to

trigger ICC-related bugs. For example, NULLINTENTFUZZER

[63] generates intents with null value for all fields to detect

failed ICC calls. INTENTDROID [11] fuzzes different value for

intent fields that used in apps to simulate various ICC calls,

aiming to comprehensively find ICC-related bugs. ICCFUZER

[13] first conducts a path-insensitive ICFG analysis to resolve

the possible value of intents fields and these values are used

to generate real intents in the actual processing of apps.

However, these intents generated by different intent fuzzers are

unrealistic as the users are difficult to reach these scenarios

through normal UI interactions. We introduce reinforcement

learning to enable ICCDROID to test the app like a normal

user, ensuring the agent can intelligently select realistic actions

in the apps to discover realistic ICC-related bugs.

To our knowledge, few work [14], [15] leverages different

combinations of intents and UI events to achieve higher

coverage and find more bugs. FAX [14] first sends an intent to

launch a specified activity and then injects random UI events

(e.g., monkey events) to explore this activity. MATE [15]

generates test cases with random combinations of 90% UI

events and 10% intents to discover more bugs. However, FAX

and MATE do not consider the execution order of intents

during testing. The simple and random combinations of UI

events and intents are difficult to find deep ICC-related bugs.

ICCDROID designs an intent reward for ICC-guided explo-

ration to consider the number of explored intents, the number

of promising-to-explore intents and the execution order of

explored intents. This reward enables the agent to explore

diverse combinations of ICC calls for effectively finding more

deep ICC-related bugs.

VII. CONCLUSION

In this paper, we propose a novel approach to effectively find

ICC-related bugs. Our approach designs a graph enhancement

exploration strategy based on Q-learning to complement the

ICC call graph generated by static analysis. Leveraging this

graph, we further design an ICC-guided exploration strategy

also based on Q-learning to improve the testing effectiveness

in bug finding. We also implemented this approach as an

automated testing tool ICCDROID. The ICC-related bugs found

by ICCDROID on 28 target apps are 1.7∼2.7 times more than

the others. We have reported these ICC-related bugs revealed

by ICCDROID to the app developers. So far, 13 reported bugs

have been confirmed and five of which have already been fixed.

VIII. ACKNOWLEDGMENTS

We thank the anonymous ISSRE reviewers for their valuable

feedback and the valuable assistance from Jiwei Yan (Uni-

versity of Chinese Academy of Sciences) and Michael Auer

(University of Passau) for runing their tools. This work was

supported in part by NSFC Grant 62072178, National Key Re-

search and Development Program (Grant 2022YFB3104002),

“Digital Silk Road” Shanghai International Joint Lab of

Trustworthy Intelligent Software under Grant 22510750100,

National Key Research and Development Program (Grant

2020AAA0107800), and the Shanghai Collaborative Innova-

tion Center of Trusted Industry Internet Software.

412

REFERENCES

[1] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An empirical
study of the robustness of inter-component communication in android,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2012). IEEE, 2012, pp. 1–12.

[2] K. Choi, M. Ko, and B.-M. Chang, “A practical intent fuzzing tool for
robustness of inter-component communication in android apps,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 12, no. 9,
pp. 4248–4270, 2018.

[3] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2019, pp. 1070–1073.

[4] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, 2013, pp. 641–660.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258–261.

[6] T. Cai, Z. Zhang, and P. Yang, “Fastbot: A multi-agent model-based
test generation system beijing bytedance network technology co., ltd.”
in Proceedings of the IEEE/ACM 1st International Conference on
Automation of Software Test, 2020, pp. 93–96.

[7] Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang, “Fastbot2:
Reusable automated model-based gui testing for android enhanced by
reinforcement learning,” in 37th IEEE/ACM International Conference
on Automated Software Engineering, 2022, pp. 1–5.

[8] X. Huang, A. Zhou, P. Jia, L. Liu, and L. Liu, “Fuzzing the android
applications with http/https network data,” IEEE Access, vol. 7, pp.
59 951–59 962, 2019.

[9] R. Sasnauskas and J. Regehr, “Intent fuzzer: crafting intents of death,”
in Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, De-
bugging, and Analytics (PERTEA), 2014, pp. 1–5.

[10] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “Intentfuzzer:
detecting capability leaks of android applications,” in Proceedings of
the 9th ACM symposium on Information, computer and communications
security, 2014, pp. 531–536.

[11] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
2015, pp. 118–128.

[12] J. Jenkins and H. Cai, “Dissecting android inter-component communi-
cations via interactive visual explorations,” in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2017, pp. 519–523.

[13] T. Wu and Y. Yang, “Crafting intents to detect icc vulnerabilities of
android apps,” in 2016 12th International Conference on Computational
Intelligence and Security (CIS). IEEE, 2016, pp. 557–560.

[14] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-entry
testing of android applications by constructing activity launching con-
texts,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 457–468.

[15] M. Auer, A. Stahlbauer, and G. Fraser, “Android fuzzing: Balancing
user-inputs and intents,” in 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2023, pp. 37–48.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[17] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 153–164.

[18] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement
learning for android gui testing,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, 2018, pp. 2–8.

[19] T. A. T. Vuong and S. Takada, “A reinforcement learning based approach
to automated testing of android applications,” in Proceedings of the
9th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, 2018, pp. 31–37.

[20] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep reinforce-
ment learning for black-box testing of android apps,” arXiv preprint
arXiv:2101.02636, 2021.

[21] J. Yan, S. Zhang, Y. Liu, J. Yan, and J. Zhang, “Iccbot: fragment-
aware and context-sensitive icc resolution for android applications,”
in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, 2022, pp. 105–109.

[22] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 176–186.

[23] K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based malware detection
on android,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 6, pp. 1252–1264, 2016.

[24] J. Jenkins and H. Cai, “Icc-inspect: Supporting runtime inspection of
android inter-component communications,” in Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems,
2018, pp. 80–83.

[25] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Proceed-
ings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering, 2014, pp. 576–587.

[26] C. Izurieta, D. Rice, K. Kimball, and T. Valentien, “A position study
to investigate technical debt associated with security weaknesses,” in
Proceedings of the 2018 International Conference on technical debt,
2018, pp. 138–142.

[27] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE software, vol. 19, no. 1, pp. 42–51,
2002.

[28] Google, “Intent,” https://developer.android.com/reference/android/
content/Intent, 2023.

[29] ——, “Intents and intent filters,” https://developer.android.com/guide/
components/intents-filters, 2023.

[30] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 238–249.

[31] Google, “Soot framework,” https://github.com/soot-oss/soot, 2023.

[32] Github, “Ui automator2,” https://developer.android.com/training/testing/
other-components/ui-automator, 2023.

[33] Google, “Android debug bridge,” https://developer.android.com/studio/
command-line/adb, 2023.

[34] ——, “Logcat command-line tool,” https://developer.android.com/
studio/command-line/logcat, 2023.

[35] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet?(e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 429–440.

[36] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
android against real-world bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 119–130.

[37] H. Guo, X. Liu, B. Li, L. Cai, Y. Hu, and J. Cao, “Sqdroid: A semantic-
driven testing for android apps via q-learning,” in 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2021, pp. 301–310.

[38] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su, “Understanding
and finding system setting-related defects in android apps,” in Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2021, pp. 204–215.

413

[39] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[40] Google, “Ui/application exerciser monkey,” https://developer.android.
com/studio/test/monkey, 2022.

[41] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 94–105.

[42] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 469–480.

[43] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of android apps,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 2020, pp. 481–492.

[44] P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz, “Security
code smells in android icc,” Empirical software engineering, vol. 24,
no. 5, pp. 3046–3076, 2019.

[45] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, 2013,
pp. 68–74.

[46] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps,” IEEE Transactions on Software Engineering, 2020.

[47] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 269–280.

[48] Y. Xiong, M. Xu, T. Su, J. Sun, J. Wang, H. Wen, G. Pu, J. He, and
Z. Su, “An empirical study of functional bugs in android apps,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 1319–1331.

[49] J. Sun, T. Su, K. Liu, C. Peng, Z. Zhang, G. Pu, T. Xie, and Z. Su,
“Characterizing and finding system setting-related defects in android
apps,” IEEE Transactions on Software Engineering, vol. 49, no. 04, pp.
2941–2963, 2023.

[50] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su,
“Fully automated functional fuzzing of android apps for detecting non-
crashing logic bugs.” 2020.

[51] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[52] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of android apps: A systematic literature review,” IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45–66, 2018.

[53] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE software, vol. 32, no. 5, pp. 53–59, 2014.

[54] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in International Confer-
ence on Fundamental Approaches to Software Engineering. Springer,
2013, pp. 250–265.

[55] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux, and
A. Vernotte, “Recent advances in model-based testing,” Advances in
computers, vol. 101, pp. 53–120, 2016.

[56] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 599–609.

[57] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 23–26.

[58] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana, “Agrip-
pin: a novel search based testing technique for android applications,” in
Proceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, 2015, pp. 5–12.

[59] Y. Koroglu and A. Sen, “Reinforcement learning-driven test generation
for android gui applications using formal specifications,” arXiv preprint
arXiv:1911.05403, 2019.

[60] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and
Y. Donmez, “Qbe: Qlearning-based exploration of android applications,”
in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2018, pp. 105–115.

[61] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-
based technique for android mobile application testing,” in 2011 IEEE
fourth international conference on software testing, verification and
validation workshops. IEEE, 2011, pp. 252–261.

[62] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[63] GitHub, “Nullintentfuzzer,” https://github.com/MindMac/IntentFuzzer,
2023.

414

