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Abstract—Android apps are popular in our daily life, while
the testing and maintenance of them is still an open challenge.
Random-based testing tools are time-consuming and model-
based testing tools are unrealistic to construct all functional
behaviors precisely. Existing testing tools based on reinforcement
learning not only have difficulty in understanding the business
logic of an application, but also face the problem of state
explosion during testing. In this paper, we propose SQDroid,
a semantic-driven approach for Android apps based Q-learning.
SQDroid encourages the Q-learning agent to prefer the actions
with functional semantics through a dynamic semantic reward
function, which is beneficial to the understand business logic of
an app. A state clustering module, employed to compress the state
space in Q-table, utilizes the widget attributes on GUI hierarchy
to abstract a state. It can reduce the number of states in Q-
table and avoid the execution of repetitive actions. We evaluate
SQDroid on 48 open-source Android apps. The results show
SQDroid outperforms the state-of-the-art model-based/search-
based technique/reinforcement learning-based Stoat, Sapienz and
Q-testing in terms of code coverage and fault revelation.

Index Terms—Android app testing, Q-learning, dynamic se-
mantic reward, state clustering

I. INTRODUCTION

With the proliferation of smart devices, the number of

Android apps has drastically increased [1], [2]. However, how

to ensure the quality of applications becomes a great challenge

for test engineers. Existing random-based approaches [3], [4]

can quickly cover superficial functionalities, but difficult to

test complex applications. Search-based approaches [5]–[7] are

easily deployed in industrial environments while they generate

a large amount of invalid test cases which waste testing time.

Although Model-based approaches [8]–[10] achieve a good

test result according to modeling the behavior of application,

it is almost impossible to design a precise model for each app.

Machine Learning-based approaches also appear in Android

automated testing. Recently, several research works [11]–[14]

employ reinforcement learning, especially Q-learning [15],

[16], to explore apps. They utilize Q-table to record the

explored states that abstracted from GUI hierarchy and then

update Q-value according to the feedback reward caculated

by the differences between two states before and after an

action. As the number of exploration increases, the Q-table

will describe the actual behavior of an app more precisely.

Although existing approaches based on reinforcement learning

can be applied to various types of apps without modeling, as

trial-and-error approaches, they fall short on generating long

and meaningful event sequences for complex apps.

It is observed that one business functionality usually consists

of a series of states triggered by the specific event sequence,

which we called semantic state sequence. They can inspire the

Q-learning agent to test the business logic [17]–[19] of apps.

Therefore we propose SQDroid, a novel Q-learning approach

based on semantic-driven strategy, which integrates semantic

reward and frequency reward to guide the agent during testing,

and adjusts the proportion of them according to the consump-

tion situation of semantic state sequences. Under the guidance

of this dynamic reward, the agent is preferable to explore

functionalities described by the semantic state sequence. As

the number of explored semantic state sequences increases,

the dynamic reward function adaptively decreases the weight

of semantic reward. Supporting by semantic-driven strategy,

SQDroid is promising to test hard-to-reach functionalities and

reach complex functionalities more early.

State explosion is a very common phenomenon in the

reinforcement learning-based approaches [20], [21], which

wastes testing time as well as reduces the ability of Q-table

to describe app behavior. In order to improve test efficiency,
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Fig. 1. Fig. 1a, 1b and 1c are three GUI snapshots of Loaned app and Fig. 1d, 1e and 1f are their corresponding GUI trees

we propose a state clustering module to aggregate widgets on

the GUI hierarchy and compress the state space in Q-table.

As a result, SQDroid avoids repetitively testing some code

paragraph and easily tolerates the changes of widgets under

diverse layouts (e.g., ListLayout, CircleLayout). Especially for

widget-rich apps, it can still precisely build the Q-table against

the app behavior.

In this paper, the three main contributions are as follows:

• We novelly propose a semantic-driven exploration strat-

egy based on Q-learning, which employs dynamic seman-

tic reward function to understand the business logic and

test complex functionalities in apps.

• We design a state clustering module, which is beneficial

to compress state space in Q-table and improve the

exploration efficiency of SQDroid.

• We have implemented SQDroid as an Android testing

tool and further make a large-scale evaluation. Results

show that SQDroid outperforms existing approaches

in terms of both code coverage and crash detection.

We also make the tool and data available on Github:

https://github.com/androidAppGuard/SQDroid.

The remainder of this paper is structured as following:

Section II introduces necessary background about Android

App and Q-learning; Section III makes an introduction to

our semantic-driven exploration based Q-learning; Section IV

describes the state clustering module; Section V evaluates

our approach and shows the experiment results; Section VI

summarizes previous related works about automatic testing

technologies and Section VII makes a conclusion.

II. BACKGROUND

This section provides relevant information about reinforce-

ment learning-based Android GUI testing.

A. GUI of Android App

An Android app interacts with users by showing various

Graph User interface (GUI) pages. There are many widgets on

the GUI page and they are arranged into a tree-like structure,

which is called GUI tree in this paper [8], [20]. Usually,

a widget is a text box (e.g., TextView, EditText), button

(e.g., RadioButton, ImageButton) or container layout (e.g.,

FrameLayout, LinearLayout) and it can trigger GUI actions

(e.g., click, long-click and swipe) to execute the corresponding

code. A widget is described by a series of attributes (e.g., text,

index and class) and each attribute is a key-value pair. Figure

1 shows some GUI snapshots and their corresponding GUI

trees before and after the operation of ”Add” one person. We

use wi to denote a widget located in the i-th node from top

to bottom in the GUI tree. The text “Person2” in Fig. 1a is

widget w6 in Fig. 1d and its text attribute is Person2. All the

widgets w0, w1, w2, w3, w4, w5, w6 in Fig. 1d form the GUI

page in Fig. 1a.

B. Q-learning
Q-learning [22] is control-temporal difference Learning and

model-free Policy prediction, inspired by behaviorist psychol-

ogy, which aims to learn perform optimally for maximizing

the cumulative reward in an unexperienced environment. The

agent utilizes a trial-and-error way to interact with envi-

ronment and receives a delayed reward signal after each

interaction. By repeatedly experiencing each action in every

state, the best action overall will be performed when facing

existing situations.
Mathematically, the reinforcement learning problem can be

ideally formulated as a Markov decision process (MDP) which

is officially defined as 4-tuple < S,A, P,R >. Where S is the

set of all non-terminal states and A refers to the set of all

actions. Figure 2 shows the ”agent-environment” interactions

in Markov decision process. For each interaction, the agent

observes own state st ∈ S in the environment then selects and

performs an action at ∈ A according to adopting the policy

π∗. At the next time step t+1, the agent receives a numerical

immediate reward rt ∈ R(st, at) and enters a new state st+1.

This process will happen repeatedly until exceeding the limit

time.

Fig. 2. The ”agent-environment” interactions in MDP

In Q-learning, the estimation of how good a state-action

pair is defined by Q-value function which returns the expected
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cumulative reward of any combination of states and actions

after performing a sequence of actions. In order to further

describe the value of state-action pair in adjacent interactions,

we use equation 1 to iteratively estimate the value of the Q-

function.

Q(st, at) = Q(st, at)+α(rt+γ max
a

Q(st+1, a)−Q(st, at)) (1)

In this equation, α is learning rate (0 ≤ α ≤ 1) which

influences the speed of state-action pair value propagation

from current observation to subsequent observation. It is

worth to emphasize that γ can balance the relation between

immediate and cumulative reward. A bigger γ means more

cumulative reward while smaller γ means more immediate

reward. To maximize the expected cumulative reward, the

optimal policy π∗ can represent the action with the highest

value Q∗ in every state. If the agents explores all actions in

all states sufficiently, the equation 1 will make the estimator

converge to the true Q-value according to a strict proof [22].

The Q-learning algorithm can learn an optimal action selec-

tion policy in Markovian environment and the interaction can

be viewed as a MDP which artificially sets reward signals.

Base on this, we employ Q-learning to explore Android

apps for maximizing the code coverage and discovering more

crashes.

III. SEMANTIC-DRIVEN EXPLORATION BASED

Q-LEARNING

A. MDP for Android Testing

In this paper, SQDroid mathematically models Android

testing problem as an MDP, which can be defined with 4-

tuple < S,A, P,R >. The definition of S, A, P and R for

the Android testing is as follows.

S: States. The goal of defining a state is to distinguish

different GUI pages on an app correctly. Given a GUI page,

SQDroid extracts all widgets on its corresponding GUI tree to

combine a state. The state st = (w0, w1, · · · , wn) is an n-tuple

where wn is the n-th widget contained in the GUI tree. For ex-

ample, Fig. 1d is the corresponding GUI tree of Fig. 1a, which

is composed of seven widgets. Therefore the state of page

Fig. 1a can be represented by (w0, w1, w2, w3, w4, w5, w6).
In order to identify each widget and refrain state explo-

sion, SQDroid utilizes the bound attribute b and index at-

tribute i of a widget, ignoring text attribute, to form a 2-

tuple (b, i). Then the state in Fig. 1a can be described

as ((b0, i0), (b1, i1), (b2, i2), (b3, i3), (b4, i4), (b5, i5), (b6, i6)).
In brief, our state st is defined as a combined state

((b0, i0), (b1, i1), · · · , (bn, in)) where (bn, in) is the tuple of

the index attribute and the bound attribute corresponding to

the widget. Finally, we use the hash value to substitute the n-

tuple, which aims at accelerating the matching efficiency when

searching for states in Q-table.

A: Actions. In this paper we define the events of app as

actions of MDP and there is no difference between events

and actions. Similar to previous research [11], [12], SQDroid

analyzes the widget attribute (e.g., click, longClick, scroll)

to obtain the available events and defines them as actions in

current state. One difference is that we utilize bound attribute

b and action type t to combine an action tuple (b, t) which

can be directly converted into executable adb commands for

faster interaction.

To balance the relationship between “exploit” and ”explore”,

SQDroid adopts ε − greedy policy to select an action in

the current state st (described in equation 2). In the case

of probability 1 − ε, the agent chooses the action with the

highest value for exploiting the performed actions and selects

a random UI action with probability 1
2ε for exploring new

state. In order to found intricate crashes, the agent also chooses

a system-level action (e.g., volume-up, power, camera) to

simulate the realistic scenarios. Generally, SQDroid sets 0.2

as the default value of ε.

selectAction(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
a

Q(s, a) 1− ε

random a system action
1

2
ε

random a UI action
1

2
ε

(2)

P: Transition Function. The transition function is used to

describe which state the app will jump to after an action is

executed, and it is determined by the application.

R: Reward. The reward is critical for Android testing,

because it has decisive impacts on the exploration strategy.

Existing technologies do not consider the semantic information

of the exploring state sequence and they are hard to explore

complex functionalities. So SQDroid designs a dynamic re-

ward function, which both considers the business logic of

exploring state sequence and the execution frequency of the

action.

B. Semantic State Sequences

As described above, one state can be abstracted from a GUI

page of app, then a state sequence can be used to represent the

GUI page of sequential experience after performing a series

of actions. To identify whether a state sequence implements a

functionality, SQDroid proposes the semantic state sequence,

which should fulfill the following three conditions:

• Every state in the state sequence belongs to the state space

of Q-table.

• Only one action can be performed (ignoring text editing)

when transitioning from the previous state to the next

state.

• A state sequence implements at least one business func-

tionality.

Figure 3 shows an example of semantic state sequence,

which describes the partial states and actions of an app called

Book Catalogue. The app is used to store and manager a list

of books. We list three semantic state sequences to explain

corresponding business functionality. As the diagram shows,

there are six states s1, s2, s3, s4, s5, s6 in the app and two

of the states may be transformed by one action such as the
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state s1 jumps to s2 after performing the action a2. In this

diagram, [s1, s2, s1], [s1, s3, s5, s3], [s1, s3, s6, s3] are three

semantic state sequences since each of them achieves one

business functionality by executing a series of orderly actions.

[s1, s2, s1] adds a new book and the business functionality of

”adding a book” is executed. [s1, s3, s5, s3] and [s1, s3, s6, s3]
view the book details at the beginning while the difference

between them is that [s1, s3, s6, s3] edits the book information

instead of deleting the book item.

Fig. 3. Semantic state sequence in Book Catalogue app

Semantic state sequence is similar to the use case but

not exactly the same. They all implements at least one

business functionality and can be easily obtained from unit

testing, integration testing, crowdsourced testing or provided

by developers. However, the semantic state sequence records

the app states after action is executed while the use case

saves the actions that require to be performed. Besides, the

semantic state sequence ignores text editing because SQDroid

is concerned with states rather than actions.

The semantic state sequence supports the calculation of

semantic reward, so SQDroid can realize the semantic-driven

exploration and understand the business functionality of apps.

C. Approach Overview

SQDroid contains two stages, semantic state sequences

collecting and Q-learning exploring. The task of semantic state

sequences collecting is to collect semantic data and Q-learning

exploring utilizes them to guide the agent to explore apps. The

overall workflow of SQDroid is depicted in Figure 4 and we

make a detailed description as follows.

Fig. 4. SQDroid workflow

Semantic state sequences collecting. We first collect the

basic use cases according to official function description of

app, and then these use cases are executed automatically on the

app under testing according to a script. Besides executing each

action in use cases, the automatic script also saves the response

GUI hierarchy files of the app. According to the definition of

state, SQDroid abstracts the corresponding state from every

GUI hierarchy file, and these states obtained by each use case

can orderly form a semantic state sequence. After gaining all

the semantic state sequences, SQDroid uses hash value to

substitute each state in the semantic state sequences, which

can reduce the storage space of state and the time consumed

for searching. Finally, these hash sequences will be loaded into

memory for further semantic reward calculation.

Q-learning exploring. SQDroid utilizes the loaded state

hash sequence to iteratively guide the agent toward

semantically-rich functionalities. The process can be viewed

as MDP where the App is the environment. In the beginning of

each exploration, SQDroid dumps the GUI Hierarchy of app’s

page through UIAutomator then employs the state clustering

module to obtain the current state. In addition, the state will

be orderly stored in an exploring state sequence, which is

used for reward calculation. After updating the state sequence,

the corresponding semantic reward (S reward) and frequency

reward (F reward) can be work out from the state hash

sequences in the stage of semantic state sequences collecting

and the number of execution times of the action.

As the number of explored semantic state sequences in-

creases, SQDroid will dynamically adjust the proportion of

each part of the final reward. The reward is used for updating

the Q-value of the prior state-action pair (st, at) in the Q-

table according to equation 2. When an unexplored state is

observed, all the related state-action pairs are added to Q-table

and each state-action pair is assigned an initial value. To avoid

unnecessary exploration, Action Pruner will set the value of

the action to 0 if there is no change between the previous

state st and the current state st+1. Finally, Action Chooser

chooses an action with maximum Q-value or randomly selects

a system-level action from Q-table in the current state. The

app will give a response to the action at and start the next

exploration.

D. Dynamic Reward Function

SQDroid proposes a dynamic reward function, besides

frequency reward, it imports semantic reward based on se-

mantic state sequences to explore business functionalities.

Furthermore, the weight of each reward can be dynamically

adjusted to balance the ”exploit” and ”explore” during Q-

learning exploring.

Semantic reward. SQDroid defines the semantic reward

rs as equation 3. P represents the set of collected semantic

state sequences and Q is an exploring state sequence in one

episode. The set of continuous subsequences of Q is defined

as sub(Q). If a sequence seq belongs to both P and sub(Q),
it indicates that the current testing has explored the semantic

state sequence seq in P . The number of such sequence is

described as |{seq | seq ∈ P ∧ seq ∈ sub(Q)}|. To scale the

reward value to between 0 and 1, it will be divided by the

total number of semantic state sequences |P |.
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rs =
|{seq | seq ∈ P ∧ seq ∈ sub(Q)}|

|P | (3)

We give an example to illustrate the specific cal-

culation process. Suppose Q is [A,B,C] and P is

[[AB],[AC],[BC]] where each letter is a state of the

app under testing, then the continuous subsequences

sub(Q) is [[A], [B], [C], [AB], [BC], [ABC]] by enumerat-

ing Q. For [AB], [BC] belong to both P and sub(Q),
therefore the number of explored semantic sequences

|{seq | seq ∈ P ∧ seq ∈ sub(Q)}| is 2 and the semantic re-

ward is 2
3 . This formula considers the relationship between

the continuous subsequences of the exploring state sequence

and the semantic state sequences. The more semantic state

sequences are explored, the more meaningful functionalities

are tested.

Frequency reward. SQDroid uses rf to represent fre-

quency reward which is defined as equation 4. The function

f(s, a) calculates the execution frequency of action a in the

state s, while rf is inversely proportional to the value of

f(s, a). We utilize a global buffer to save the number of

execution of an action for calculating rf . The initial value of

rf is 1, an action is performed more times, it will become

smaller. With the encouragement of frequency reward, the

agent can systematically experience all available actions.

rf =
1

f(s, a)
(4)

Dynamical combination reward. To fully unleash the

potentials of the two rewards, SQDroid designs a dynamical

weight to combine them. As shown in equation 6, the function

g(P ) is used to obtain the total number of explored semantic

state sequences so far, and a global variable is used for storing

the information about whether a semantic state sequence has

been explored. SQDroid regards
g(P )
|P | as the weight of rf while

the remaining ratio 1 − g(P )
|P | is viewed as the weight of rs.

Our key insight is that the agent can adaptively adjust the

exploration strategy according to the consumption situation of

collected semantic state sequences.

r = (1− g(P )

|P | ) ∗ rs +
g(P )

|P | ∗ rf (5)

We use an example to illustrate the impact of the dynamical

combination reward on exploration strategy during the testing.

At the beginning, the agent has never visited a semantic state

sequence so that the weight of rs is the maximum value of 1

while the weight of rf is 0. As a result, the explore strategy

will prioritize actions with the semantic reward. As the agent

visits more semantic state sequences, the weight of rs becomes

smaller and it does mean that the agent will tend to explore

unexecuted actions.

E. Semantic-Driven Exploration

Different from previous exploration strategies [6], [9], [11],

we propose a semantic-driven exploration which first encour-

ages the testing tool to gradually understand existing business

Algorithm 1: Semantic-Driven Exploration

input : application under test AUT , maximum use

case length l, exploration time t, initial

Q-value Qinit, learning rate α, semantic state

sequences Ssemantic

output: test suite T
1 Q← Φ � Initialize Q-table

2 T ← Φ � Initialize test suite

3 t ← Φ � Initialize test case

4 Sexplored ← Φ � Initialize explored state sequence

5 while ¬isTimeover(t) do
6 st, actionst ← analyzingGuiInfo()
7 foreach actiont ∈ actionst do
8 if actiont /∈ Q then
9 setQ value(Q, st, actiont, Qinit)

10 end
11 end
12 at ← selectAction(Q)
13 st+1 ← executeAction(AUT, at)
14 rs ← getSemanticReward({rexplored ∪

st+1}, Ssemantic)
15 rf ← getFrequencyReward(at)
16 r ← getCombinationReward(rs, rf )
17 Q(st, at) =

Q(st, at) + α(rt + γQ∗(st+1, a)−Q(st, at))
18 Sexplored ← Sexplored ∪ st
19 t← t ∪ at
20 pruneAction(Q, st, at, st+1)
21 if getLength(t) ≥ l then
22 T ← T ∪ t
23 (Sexplored, t)← (Φ,Φ)
24 restartAUT ()
25 end
26 end

logic and then explores more complex functionalities. It can

efficiently cover code with business functionalities and reveal

logical crashes.

Algorithm 1 describes the pseudocode of semantic-driven

exploration. It requires six input parameters: 1) application

under test, 2) maximum length of test case, 3) exploration

time, 4) initial Q-value for new actions, 5) learning rate and

6) semantic state sequences. With the help of these parameters,

SQDroid executes a series of actions and return a test suite as

an output. Specifically, we maintain a memory array to save

previously explored state (line 4, 18) for each new test case.

This array helps SQDroid to identify which semantic state

sequence has been executed and calculate the semantic reward.

Before generating each test case, SQDroid firstly analyzes the

GUI hierarchy to abstract the current state and executable

actions through state clustering module (line 6). For each

action in the state, the Q-table will record its value or assign an

initial value if it has never been performed (line 7-11). Then

SQDroid employs equation 2 to infer the next action to be
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executed (line 12). After performing the action, the agent will

reach a new state, the corresponding semantic reward (line 14)

and frequency reward (line 15) can be calculated by equation

3 and equation 4. SQDroid utilizes equation 5 to dynamically

combines the two rewards (line 16). To improve calculation

efficiency, every state in the exploring state sequence and

the loaded semantic state sequences will be replaced by the

corresponding hash value.

It is worth emphasizing that the exploration benefits from

the propagation of Q-value (line 17), which enables the agent

to choose valuable actions no matter what the current action is.

After an action is executed, if the new state gains higher reward

value rt, the Q-value Q(st, at) of the corresponding action

will also increase and it is more possible to be performed in

next exploration. Otherwise, the new state with lower reward

value will decrease the priority of action. In order to strengthen

the effect of new states, we set γ to 0.99 for more efficient

exploration. During the testing, the value of action which leads

to crashes or terminations will be set to 0 to avoid the futile

exploration (line 20).

In order to replay the explored scenarios, all executed

actions forms a test case (line 19) and the current test case will

be merged into the global test suite if the length of current test

case is greater than user-specified value (line 20-24). Before

the next exploration, the explored state sequence and the test

case will reinitialize to an empty set.

In brief, under the influence of the propagation property of

Q-value and the incentives of dynamical combination reward,

the agent will try to experience collected semantic state

sequences as much as possible in the first stage due to the

larger weight of the semantic reward, and it will guide the

agent to understand business logic. The next stage it derives

high-quality test input to cover unexplored functionalities by

increasing the weight of frequency reward.

IV. STATE CLUSTERING MODULE

A. State space in Q-table

According to the definition of state in section III, SQDroid

utilizes the widgets contained in the GUI hierarchy tree to

define a state. Take Figure 1 as an example, the state in

Fig. 1d is s0 = (w0, w1, w2, w3, w4, w5, w6) and the state in

Fig. 1f is s1 = (w0, w1, w2, w3, w4, w5, w6, w7). s1 has one

more TextView widget w7 (Person3) than s0 and they are two

different states in Q-table. However, their two corresponding

snapshots (Fig. 1a and Fig. 1c) both show the list of personnel

information and clicking on these TextView widgets all jump

to the details page of the person. In terms of programme

code, the clicking actions of the TextView widgets execute

the same code paragraph. If taking s1 as a new state, some

small changes (e.g., the relative position of widgets and the

number of widgets) will generate a lot of new states. It will

produce a huge state space in Q-table.

The huge state space is disruptive to the update of Q-value

and reduces the testing efficiency. It needs a lot of time for

the agent to perform all the actions in each state, let alone

precisely construct a Q-table that describes all the behaviors

Algorithm 2: State Clustering Algorithm

1 Function getState(GuiHierarchy)
2 root← getDomtree(hierarchy)
3 {curIndexPath, pathList} ←

{String(), List()}
4 recursiveAnalysis(root, curIndexPath, pathList)
5 S ← Set()
6 foreach indexPath ∈ pathList do
7 if indexPath[: −1] /∈ S then
8 S.insert(indexPath[: −1])
9 end

10 end
11 return S.hashcode()
12 end
13 Function recursiveAnals(node, curIndexPath,

pathList)
14 curIndexPath←

curIndexPath+ node.indexAttr
15 pathList.append(curIndexPath)
16 saveAvailableActions(node)
17 foreach cNode ∈ node.childNodes do
18 recursiveAnals(cNode, curIndexPath, pathList)
19 curIndexPath← curIndexPath[: −1]
20 end
21 end

of the app. As a result, the actions selected based on Q-table

may not increase code coverage and trigger more crashes. In

order to tackle this problem, we propose a state clustering

algorithm.

B. State Clustering Algorithm

The type-same widgets (e.g., w5, w6, w7 in Fig. 1f) in

a same layout container will mislead SQDroid to define

many new states in Q-table and these widgets have the same

hierarchical relationship. Analogy to hierarchical clustering

method, SQDroid regards the GUI tree as a hierarchical cluster

tree where the widgets contained in each layer are a cluster.

In order to compress state space, SQDroid utilizes the index

attribute of each widget and its relative position on the GUI

tree to define the widget, and then the parent widget of each

cluster is used to represent this cluster. Finally, all the clusters

are combined as a state.

Taking Figure 1 as an example, SQDroid obtains the index

attribute path of each widget (such as the paths of w5, w6

and w7 in Fig. 1f are 010, 011 and 012) by recursiveAnals
function and the detailed paths are marked on right side in

the GUI tree. As we can see, these widgets w5, w6, w7 are in

same hierarchical level and they are regarded as a cluster. We

observed that w4 is the parent widget of the cluster, and the

index attribute path 01 of w4 is same as the index attribute

path of w5, w6 and w7 when the last index of their paths

is removed. Therefore SQDroid employs the index attribute

path of w4 to define the cluster for aggregating these wid-
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gets. For other clusters, SQDroid adopts the same processing

steps and the state is composed of all clusters. For example,

there are four clusters in Fig. 1f and their original index

attribute paths are [0], [00, 01], [000, 001], [010, 011, 012]. The

w0 is root widget, so this cluster has no parent widget and

the remaining three clusters form the corresponding state.

According to the getState function, three parent widgets of

these clusters are defined as the state [0, 00, 01]. The detailed

procedure is described in algorithm 2.

This algorithm takes the GUI hierarchy as input and returns

hash code of the state. The GUI hierarchy is parsed as a

rooted, ordered dom tree where each node is a widget with a

set of attributes such as index attribute and bounds attribute

(line 2). According to the tree, SQDroid deploys a depth-first

traversal to analyze each node (line 4), and then the relative

index attribute path of each node is sequentially appended to

the list pathList (line 14-20). Meantime, nodes whose event

attributes (e.g. click, longClick, scroll) are true will be saved as

available actions in current state (line 16). After the recursion

is complete, it inserts each element (the index attribute path of

each node) of the path list to the set collection S (line 6-10)

and returns the hash code of the S as the state hash (line 11).

We abandon the last digit of each index attribute path to

form the S (line 7), which means that the index attribute paths

of these widgets in same level are equable. Aggregating these

widgets as a cluster is beneficial to reduce the number of state

and improves the accuracy of Q-table.

V. EVALUATION

In this section, we mainly evaluate SQDroid in two aspects.

One is the ability to increase code coverage and reveal

more crashes; the other is the ability to enhance the testing

efficiency. We seek to answer the following research questions:

RQ1: Code Coverage. How is the code coverage achieved

by SQDroid when comparing with the state-of-the-art and the

state-of-practice testing tools?

RQ2: State Clustering Module. Is SQDroid able to im-

prove the ability to compress state space and testing efficiency

when employing this state clustering module?

RQ3: Fault Revelation. How is the fault revelation ability

of SQDroid when comparing with the state-of-the-art and the

state-of-practice testing tools?

A. Implementation

Tool Implementation. SQDroid is implemented as a auto-

mated app testing framework, which reuses and extends the

following tools: the GUI hierarchy files of applications are

dumped by Android UI Automator; the executable actions

are analyzed by Python library DOM; the action execution

commands (including system-level actions) are delivered by

Android Debug Bridge (ADB). So far, SQDroid supports UI

actions (click, long click, edit), navigation actions (scroll,

back, menu, home) and system-level actions (open browser,

add volume, caps lock, screencap). For code coverage collec-

tion, SQDroid monitors open-source applications by Jacoco

and we also enable Stoat and Sapienz to compute code

coverage with Jacoco for fairness.

Execution Environment. We conduct all experiments on

a physical machine of Ubuntu 16.04, which is composed of

hardware facilities 4 cores 3.20GHz CPU and 8GB RAM. All

experiments are conducted on Android Kitkat version with

API 19 (Android 4.4), the same as publicly available Sapienz

and Stoat, and each emulator is configured with 2GB RAM.

Target Apps. We collect 48 open-source Android Appli-

cations as our benchmark. The mainly source is related work

[11], [15]. However, some applications cannot be compiled

due to no maintenance for a long time. We select 23 apps

and most of them have less than 1K executable lines of codes

(ELOC). To make our experiments more convincing, we add

25 larger apps with complex logical functionalities to enrich

our benchmark. These apps are from other source apps list

[23] and F-Droid [24]. For diversity category applications

may reflect the advantages of semantic-driven exploration

strategy and the number of target apps has a balance between

several common categories such as news, finance, tools and

communication.

Semantic State Sequence Data Collection. According to

the definition of the semantic state sequence, we pick out

the basic use cases according to official function description

of target apps because the semantic state sequence and the

use case both achieve at least one functionality. In order to

transform these use cases into semantic state sequences, we

utilize a script to perform all the actions in use cases and

record the corresponding GUI hierarchy file for each action.

The collected data is used for calculating semantic reward. In

Table I, The column “#Data” shows the number of collected

semantic state sequence for each app. We collected a total of

222 semantic state sequences for 48 target apps and the length

of each semantic state sequence is in the range of 3-8.

B. Evaluation Setup

To answer the research questions above, we conduct three

empirical studies on 48 target apps.

Study 1. To answer RQ1, we compare SQDroid with

Monkey [3], Stoat [8], Sapienz [5] and Q-testing [11], which

are regarded as the state-of-practice and state-of-art tools in

Android automated testing, to investigate how much code

coverage is improved. According to their previous research

work, we limit the deadline for each experiment to 1 hour.

For Monkey, we assign 200 milliseconds to wait the response

of the app under the testing. For Stoat, we set 30 minutes

for modeling and 30 minutes for generating test input. For

Sapienz, we adopt default population size 50 to evaluate

each app. Several apps cannot be executed due to the large

population size, so we adjust the population size of these apps

to one with the highest code coverage. As for Q-testing, we

adopt the default configuration due to it is a closed-source

testing tool.

We also compare SQDroid1 (employing dynamical combi-

nation reward as reward function) with SQDroid2 (employing

frequency reward as reward function) to investigate whether
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TABLE I
TESTING RESULTS ON 48 OPEN-SOURCE APPS

Subject %Coverage #Crashes #States #Data

Name ELOC M SA ST Q S SQ1 SQ2 SQ3 M SA ST Q SQ1 SQ2 SQ3 SQ1 SQ3 S

MunchLife 232 81 82 81 43 27 80 76 77 0 0 0 0 0 0 0 8 10 3

Mynotes 267 84 90 82 56 59 92 75 77 0 1 0 1 1 0 0 7 12 4

RecordTimeDroid 301 70 89 88 32 12 89 89 80 0 0 0 0 0 0 0 9 12 3

Snotepad 347 74 84 81 50 21 96 80 79 0 0 0 0 0 0 0 18 21 5

Manpages 388 3 5 4 2 2 5 4 3 0 1 0 0 1 1 1 10 10 4

AnyCut 402 34 69 31 22 40 68 64 67 2 3 2 1 5 0 2 5 8 3

Manille 502 13 16 15 15 15 15 14 14 1 0 0 0 1 0 0 8 6 5

BatteryDog 513 72 75 66 76 19 69 68 67 0 0 0 0 0 0 0 4 4 4

DumpPhone 570 59 41 41 31 32 41 41 32 0 1 0 0 1 1 0 4 5 3

SoundBoard 629 33 33 48 33 30 33 30 33 1 1 3 2 1 1 3 9 11 4

LockPattern 741 8 11 8 8 7 9 8 8 2 2 2 2 2 0 2 9 12 5

Siggen 751 96 95 87 86 73 82 78 82 2 0 0 1 1 0 0 5 9 5

MultiSmsSender 852 10 8 7 7 3 8 7 7 0 0 0 0 0 0 0 9 10 4

Whohasmystuff 853 80 82 79 13 58 79 13 63 0 1 0 0 0 0 0 15 19 5

AutoNight 856 28 30 31 20 24 28 28 25 2 2 3 2 3 2 1 3 6 3

ALogcat 889 74 76 53 75 57 74 73 72 0 0 0 0 0 0 0 8 8 5

SmsScheduler 929 6 8 9 6 6 10 6 9 2 2 0 0 0 0 0 20 22 4

Alarm 996 19 20 20 19 15 23 19 20 1 3 1 1 3 1 1 15 9 5

Talarmo 1020 75 73 74 74 63 74 77 74 2 0 1 2 1 0 1 7 7 4

ToneDef 1433 22 41 40 38 31 39 39 39 1 0 2 1 2 2 0 9 11 5

PasswordMaker 1511 31 19 21 13 14 17 14 14 2 1 1 0 1 0 0 2 6 4

MoneyBalance 1725 32 38 13 32 30 69 51 39 0 1 0 0 1 1 0 27 36 5

Notes 1864 57 58 52 39 20 47 38 41 5 2 0 0 0 0 0 25 31 4

ImportContacts 1987 8 7 7 7 5 8 7 7 1 0 1 1 6 0 1 9 11 3

Loaned 1988 57 30 65 33 39 59 64 46 0 0 0 1 1 1 1 20 43 7

BudgetWatch 2390 45 48 49 39 29 53 46 45 1 1 3 1 2 1 1 52 34 6

Budget 2470 65 58 58 54 50 71 66 67 0 1 0 0 1 0 0 61 46 5

GoodWeather 2499 52 50 65 51 21 71 49 67 2 4 0 0 5 2 1 34 28 6

XiaExpress 2897 40 12 12 12 11 12 12 11 0 0 0 0 0 0 0 4 4 4

BeQuick 2922 48 50 38 21 38 21 33 37 1 0 1 1 3 0 0 9 15 4

Swiftp 3106 28 31 31 31 27 31 31 31 2 2 2 2 0 2 0 15 15 5

Ammeter 4096 25 28 27 28 25 27 22 25 0 2 1 4 5 0 0 8 10 5

Sanity 4964 15 13 7 5 7 12 7 12 1 0 1 0 1 0 1 10 17 5

Tomdroid 5044 39 39 40 43 20 54 40 44 1 1 0 1 2 1 2 27 25 5

RadioBeacon 7483 45 39 41 39 28 42 39 40 4 1 3 1 3 3 3 28 108 5

Materialistic 8464 40 61 40 32 47 63 62 40 4 2 0 1 6 5 5 90 38 5

KeepassDroid 9369 18 16 17 9 8 17 11 11 0 0 0 0 0 0 0 8 7 4

Vanilla 10717 43 35 43 47 20 50 47 50 5 2 0 3 5 5 1 67 88 5

BetterBatteryStats 10862 30 21 32 33 12 14 12 12 0 0 0 0 0 0 0 7 9 5

APhotoManager 11691 39 35 40 31 9 25 10 12 3 4 1 1 7 0 1 75 12 4

Timber 11876 30 30 24 22 13 38 27 30 4 2 0 0 4 4 2 111 151 5

AnyMemo 12119 33 55 16 57 15 59 27 55 0 0 1 0 2 0 1 125 145 5

RunnerUp 15119 40 21 38 21 22 52 47 48 1 2 0 1 2 2 1 75 74 6

AmazeFileManage 24223 28 28 28 30 19 30 28 29 2 2 4 4 6 6 2 210 296 6

BookCatalogue 24858 28 29 26 12 7 34 26 30 3 3 1 4 5 4 3 38 47 5

Suntimes 30197 28 42 18 13 19 43 35 33 3 2 3 1 9 2 3 101 141 6

Anki 35556 29 32 22 38 19 38 29 33 1 2 1 2 7 0 1 76 91 5

MyExpenses 41171 32 33 22 31 25 42 17 39 1 4 3 1 11 0 3 192 272 5

Average/Sum 6388 40 41 38 32 24 44 37 39 63 58 41 43 117 47 44 35 42 222

the semantic reward can improve the code coverage and the

ability to reveal crashes. The dynamical combination reward

in section III considers both the semantic relationship of

the exploring state sequence and the execution frequency of

actions while the frequency reward only involves the number

of actions performed. We implemented the dynamical combi-

nation reward into SQDroid1 and the frequency reward into

SQDroid2. For each testing tool, we start from 0 to calculate

the achieved code coverage. To alleviate randomness, we run

five repeated experiments on the 48 target apps and investigate

how much average code coverage has been achieved.

Study 2. To answer RQ2, we compare SQDroid1 (imple-

mented by state clustering module) with SQDroid3 (imple-

mented by combining executable widgets) to investigate the

code coverage and the number of states involved. The pre-

vious state abstraction algorithms [15], [16] in reinforcement

learning usually utilize executable actions to define a state,

therefore we implemented this algorithm into SQDroid3.

Study 3. To answer RQ3, we compare SQDroid with

Monkey, Stoat, Sapienz and Q-testing to investigate how many

crashes are found during the testing. In order to obtain the

number of crashes, we analyze the output log of logcat and

aggregate these crashes for each testing tool to get unique

crashes.

C. Experimental Results

RQ1: Code Coverage. Table I shows the average instruc-

tion coverage of state-of-the-art testing tools (M, SA, ST, Q,

S, SQ1 indicate Monkey, Sapienz, Stoat, Q-testing, semantic

state sequences and SQDroid1) on 48 target apps. We sort

the apps by ELOC extracted from Jacoco report and the

gray cells indicate which tool achieves the highest average

instruction coverage. As we can see, SQDroid outperforms the

state-of-practice Monkey (40.54%), the state-of-the-art search-

based technique Sapienz (41.37%), the model-based tech-

nique Stoat (38.27%) and the reinforcement learning-based

Q-testing (32.06%) by covering 44.37% average instruction

coverage. The average instruction coverage (24.5%) obtained

by performing the semantic state sequences is much less than

SQDroid. It also shows that SQDroid has the ability to explore

uncollected functionalities. At the same time, We found that

SQDroid achieves the highest instruction coverage for 23 apps

while Monkey, Sapienz, Stoat and Q-testing are 9, 13, 6 and

5. In addition, we group these apps by the size of ELOC and

calculate the final coverage results which is depicted in Figure

6. It can be seen from these box-plots, SQDroid achieves the

highest average instruction coverage in four app size groups.

The column SQ1 (denotes SQDroid1) and the column

SQ2 (denotes SQDroid2) in Table I also show the test

result of SQDroid whether to use the semantic reward as the

reward function. For the average instruction coverage, SQ1

with the semantic reward and the frequency reward is 44.37%

while SQ2 with the frequency reward only is 37.20%. For

the number of crashes, SQ1 reveals 117 and also achieves

higher performance than SQ2 (47). The result means that the

semantic reward improves the ability of SQDroid to cover

more code and reveal more fault.

Fig. 5. Instuction coverage achieved by Monkey, Stoat, Sapienz, Q-testing
and SQDroid

RQ2: State Clustering Module. In Table I, SQ1 represents

SQDroid1 (implemented by state clustering module) and
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SQ3 denotes SQDroid3 (implemented by combining exe-

cutable widgets). In term of code coverage and fault revelation,

SQ1 achieves better performance than SQ3. As for code

coverage, SQ1 achieves 44.37% on average while SQ3 is

39.08%. For fault revelation, SQ1 discovers 117 crashes in

total while SQ3 is 44. We also record the number of all

states in the Q-table during the testing for each app, as we

see column “#State” in Table I, SQ1 define less states than

SQ3 and therefore avoids a lot of repetitive explorations.

In addition, we manually compare the number of states

and activities in several apps, and find that a few activities

correspond to a lot of states where most of them are similar

and unnecessary. For example, we obtain 36 activities from

the source code of app MyExpenses while there are 272

states defined in the Q-table of SQ3. It is a fatal shortcoming

for testing tools based on reinforcement learning, because

massively similar states require the agent to re-execute all the

actions in each state. However, according to the comparison

of the number of SQ1 and SQ3 states, we note that SQ1

effectively reduces the number of state in Q-table.

RQ3: Fault Revelation. Table I also shows the unique

crashes for each testing tools. We adopt the definition in Stoat,

a fault is defined as a crash or exception (containing the

keywords of the app’s package name) in stack traces. SQDroid,

Monkey and Sapienz reveal the most crashes on 29, 12 and

10 apps, respectively. In the remaining apps, 7 apps have the

most crashes detected by Stoat while the other 4 apps have the

most crashes detected by Q-testing. In total, SQDroid detects

117 crashes among all the apps, which outperforms Stoat (41),

Q-testing (43), Sapienz (58) and Monkey (63).

Fig. 6. Pairwise comparison on revealing crashes

To investigate whether the testing tools are complementary

on revealing crashes, we make a pairwise comparison whose

result is shown in Figure 7 (the proportion of crashes revealed

by both testing tools is the dark grey areas). SQDroid reveals

the largest number of total crashes on 48 apps while the

highest proportion of the number of overlapping crashes is

found by Monkey and Sapienz. We think the reason for this

phenomenon is that Monkey and Sapienz both randomly inject

events to generate event sequences. As for unique crashes,

SQDroid discovers 77 while Monkye, Sapienz and Stoat find

23, 15 and 8. It means the ability of SQDroid to reveal unique

crashes can not be replaceed by other testing tools.

D. Threats to Validity

Internal Threats. The main threat to internal validity is the

choice of parameter value. Values of different input parameters

have a significant impact on testing results. To mitigate the

issue, we follow the default value for Monkey, Sapienz and

Stoat as much as possible. For several apps that do not

apply the default values, we choose the best performance

parameter configuration according to conducting small-scale

experiments.

Additionally, some crashes are caused by the low perfor-

mance of the Android emulator. The device may become

unresponsive due to a large number of events sending in a short

period of time. To avoid the problem, SQDroid and monkey

set an interval of 200ms in two events and we also rule out

the crashes caused by the low performance of devices.

External Threats. The main threat to external validity is

semantic state sequence data collection. Since we collect the

semantic state sequences of core business logic by artificial

decision, some critical semantic state sequences may be ig-

nored and cause the incorrect reward. To alleviate the threat,

we decide to choose the basic use cases through the official

description of app. If the use case can achieve at least one app

functionality, we adopt it and translate it into the semantic state

sequence; otherwise we abandon it.

VI. RELATED WORK

Many technologies have been proposed for Android auto-

mated testing. We categorize and briefly introduce existing

automatic testing techniques according to different exploration

algorithms.

Random-based Technologies. One of most practical testing

tool randomly selects an available user event or system-level

event to fuzz the apps under testing. Monkey [3], which is in-

tegrated in the android system, sends massive pseudo-random

event streams to simulate user operations. Although the high

efficiency and the ability to quickly detect the robustness and

stability of apps, it falls short on testing complex applications

due to the relatively unintelligent event generation manner.

From the point of view, SQDroid considers event execution

frequency as frequency reward to systematically select event.

Thus, many futile testing can be avoided.

Search-based Technologies. The first search-based test-

ing tool EvoDroid [7] utilizes experienced event and state

to construct a graph and employs the graph to guide the

search process. Different to it, Sapienz [5] leverages the

first Pareto multi-objective (e.g., code coverage, test sequence

length) to test apps, and significantly outperforms Monkey

and Dynodroid on 68 open-source real-world apps. They have

aroused a lot of industry attention while the probability of

generating available test cases is unpromising. SQDroid selects

the executable events based on the current state, so each event

is available to the app.

Model-based Technologies. Model-based testing technolo-

gies [9], [25] are popular in Android automated testing. Stoat

[8] builds a dynamic weighted UI model during the exploration

and the test cases are generated by Gibbs sampling on the
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model. A3E [26] employs the targeted exploration (directly

and quickly exploring the target activities) and the depth-

first exploration (systemically exploring the activities) to test

apps. To some extent, SQDroid benefits from model-based

technologies because the update of Q-table is based on the

actual behavior of app and then the Q-table can be viewed as

the model of app.

Learning-based Technologies. The most closely related

technologies leverage reinforcement learning to explore apps.

Adamo et al. [15] and Vuong et al. [16] first employ Q-learning

to guide the testing process. They design frequency reward

function and difference reward funtion to influence the agent’s

exploration strategy. Unfortunately, only simply relying on this

information, the strategy cannot achieve high code coverage

in complex apps. However, none of them considered the

business logic of the application and thus their performance is

limited. SQDroid tackles this problem by designing a dynamic

semantic reward function to understand business logic of

complex functionalities.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose SQDroid to explore more complex

functionalities for Android app. Additionally, SQDroid aggre-

gates the type-similar widgets to avoid state explosion. The

state space reduction improves the accuracy of Q-table de-

scribing app behaviors. To verify the validity of SQDroid, we

conduct a thorough evaluation on 48 open-source target apps

and the evaluation results show that SQDroid outperforms the

state-of-the-art search-based technique Sapienz and the best

model-based technique Stoat. In the future we will evaluate

SQDroid on some real bugs data set [27].

ACKNOWLEDGMENT

We thank the anonymous QRS reviewers for their valuable

feedback. We also thank Ting Su from East China Normal

University for his constructive comments on the early draft

of this work. This work was supported by Shanghai Key

Laboratory of Computer Software Evaluating and Testing.

REFERENCES

[1] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in android apps,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 408–419.

[2] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps,” IEEE Transactions on Software Engineering, 2020.

[3] Google, “Ui/application exerciser monkey,” https://developer.android.
com/studio/test/monkey, 2021.

[4] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[5] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 94–105.
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